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Ingredients

• Effective model of glasses, including dislocations 

and defects

• Continuous gauge model of glasses with static 

disorder

• ‘Supersolid’ model: add superflow confined to 

dislocations and introduce dynamics to these

• Must first understand dislocation dynamics
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RATIONALE

                                  At the moment theorists are struggling to understand 

                                  the variety of experiments on supersolidity in He-4, 

                                  which lead to seemingly conflicting interpretations. 

                                  The purpose of the present study is therefore not to 

                                  give a theory to be tested against experiment, but 

                                  instead to look at a few questions which apparently 

                                  underlie this field, and which may need to be answered 

                                  first. The 2 questions we will address here are

   (i) What are the important interactions in a Bose glass at low T, and how 

must a theory of these incorporate superflow along dislocations?

   (ii) How do line singularities like dislocations and vortices move in a 

Bose system?

   

It will be seen that we are opening a few skeleton-packed closets here. 

However, we do give partial answers to these questions.



INTERACTIONS in Low-T GLASSES M Schecter, PCE Stamp, 

J Phys CM 20, 244136 (2008)

& to be published

L Thompson, PCE Stamp

To be published
First we recall some basic notions of the theory of 

elastic solids.  We assume that a set of reference 

points        is shifted by a distortion of the system, caused by either the 

presence of external forces or internal strains,  to give a set of points       . 

Then, defining                           and the gradient fields:   

Strain field

Torsion field

We can then write down the following effective Hamiltonian

In what follows we will assume that on the length scales of interest, the 

disordered system can be divided into a homogeneous medium (in which local 

crystal structure is unimportant) and a distribution of dislocations and defects 



(b)  GRADIENT PHONON TERMS:  

(a) BARE PHONONS:

In real space we have

In terms of the usual Lame coefficients. In momentum space one has 

Using phonon operators:

The bare phonon terms do not capture all of the physics – we need to add 

terms which describe the way the system accommodates torsional stress 

from dislocations. For a start this means incorporating higher gradient 

terms involving torsion, as follows:

(where            are 2 length scales to be determined by expt) & then assuming 

that the source of the torsion is a network of STATIC dislocations– the locus 

of these sources is 

Then we have

where            is the local tangent vector to     , &     is the Burgers vector.    



(c) DEFECT TERMS

In a typical disordered quantum solid 

there will be defects and possibly 

impurities. If we only include on-site 

dynamics then a simple TLS-style 

Hamiltonian describes them:

However we also need to include the 

interaction with the background medium.

There is a local interaction with degrees 

of freedom      describing defects that are 

not inversion-symmetric:  

   

However defects that are 

Inversion-symmetric in their 

local environment only interact 

with phonon gradient terms – 

which again are crucial:
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Gauge field Q is a static 
realization of disorder 

f (the mean square vorticity in Q) is 
the ‘degree of frustration’

Can alternatively derive Q
from a continuum deformation 
model (in the spirit of the 
previous slides) with localized 
dislocations etc.



MODIFICATIONS for a SUPERSOLID

    The picture so far applies to a system where the defects (dislocations, 

vacancies, interstitials) are frozen in space. However in a supersolid (and 

indeed even in the normal ‘quantum solid’ phase) in He-4, this is not the case 

– we expect all of these to be quite mobile. Thus, to the Hamiltonian given 

above we need to add these kinetic terms.

     Moreover, from the work of Prokof’ev & Svistunov (and increasingly from 

experiment) we have evidence that superflow (ie., dissociation and coherent 

superflow of vacancies & interstitials) occurs along the dislocations – the 

superfluid density being strongly confined around the dislocation core.  Thus 

in the above we need to add a superfluid field, confined to the dislocations.

    One can write down a field theory which takes all of this physics into 

account. But before one can do anything with it, it is necessary to solve a 

very important question, viz., 

   

   WHAT IS THE CORRECT DYNAMICS FOR A QUANTIZED LINE DEFECT ?

We need to answer this question before we can look at the 
dynamics of the supersolid at all, because it is clear that the 
superfluid flow, and the response of the supersolid to shear 
stresses or to rotation fields, must be bound up with the 
dislocation dynamics.



Q. VORTICES ARE EVERYWHERE

RIGHT: Vortices & vortex rings in He-4

BELOW: pulsar, & structure of its 

vortex lattice

ABOVE: vortices penetrating 

a superconductor

RIGHT: Vortices in He-3 A

Conjectured structure of cosmic 

string, & of a ‘cosmic tangle’ of 

These in early universe
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Generality of results
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superconducting (sc) vortex superfluid (sf) vortex magnetic spin vortex

In all 3 systems, the vortex is formed from a 2π twist in a U(1) 
symmetry (the pairing phase in sc or sf and the easy plane 
angle in the magnetic system)

Despite microscopic differences, the resulting effective forces in 
the vortex equation of motion are the same

However, in sc’s there are additional pinning forces; and sf 
vortices are hard to image. In spin systems: no pinning, easy to 
image!

crystal dislocation

A dislocation is 
likewise a 1D line 
singularity with the 
same effective low 
energy effective 
description.



For the last 40 years there has been a very strenuous debate going on about the form of 
the equation of motion for a quantum vortex, focusing in particular on  
    (i) what are the dissipative forces acting on it?
   (ii) what is its effective mass?

Quite incredibly, the fundamental question of quantum vortex 

dynamics is still highly controversial.

The discussion is typically framed in terms of the forces acting on a vortex; the 
following terms are discussed:

Vortex as an effective particle
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Magnus force:

Iordanskii force: 

Drag force: 

Arises from Berry phase

Transverse force from quasiparticles 

scattering off vortex

Longitudinal force from quasiparticles 

scattering off vortex 

Most recently: vortex mass is frequency dependent? (Thouless, condmat 2007)



Vortex as a particle
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pair-wise motion

pq = -1 pq = +1
Chou et. al. Applied Physics Letters (2007)

Kerr imaging of magnetic vortex motion

M X(t) =�S� � (X(t)-US) + D (UN-X(t)) + D  � � (UN-X(t))
.. .

^
. .

^´
Mass estimates 

range from 0 to �
bare Magnus force longitudinal 

damping force
transverse 

damping force

Describe the vortex completely by its central coordinate, X(t)

Experimental observation of vortex motion and pair-wise motion:



The vortex + phonon system
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Consider a simple superfluid system described by the action

This is a T = 0 K form: ρ = ρs is the superfluid density (no normal fraction).

� is the fluid compressibility. 

To 0th order, we let � � �: the perturbing effect of a finite compressibility 

adds a log-divergent energy shift and additional damping forces (that can 
be shown numerically to be much smaller than the main result presenting 
in this talk).

phonon spectrum is linear with speed of sound, c0 = (� ρs)1/2

vortex profile: is the vortex topological charge



Alternative methods
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Integrate directly:

�(r - x(t)) ��[�] �X�����

Include phonons by averaging over their realizations directly:

�(r - x(t)) + �(r) �X����� ���

OR by tracing out phonons from entangled vortex + phonon system:

�[�(r - x(t))+�(r), �(r� - y(s))+�(r�)] �V (x(t), y(s))

For instance, to derive the bare Magnus force, inter-vortex forces, and forces 
due to boundary constraints.

Include vortex profile perturbations (eg. due to motion): yields a log-
divergent vortex effective mass and damping forces (no memory effects)

Still cannot predict memory effects



Quantum Brownian motion
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Feynman & Vernon, Ann. Phys. 24, 118 (1963); 
Caldeira & Leggett, Physica A 121, 587 (1983)

quantum Ohmic dissipationclassical Ohmic dissipation

damping coeff fluctuating force

Specify quantum system by the density matrix �(x,y) as a path integral.

Average over the fluctuating force (assuming a Gaussian distribution):



more Quantum Brownian motion
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Consider terms in the effective action coupling forward and 
backward paths in the path integral expression for �(x,y):

Then, defining new variables:

Introduces damping forces, opposing X and along � 
..

� normal damping for classical motion along X
� spread in particle “width” <(x-x0)

2>, x0 ~ X

Such damping/fluctuating force correlator result from coupling 
particle x with an Ohmic bath of SHO’s with linear coupling:



Density matrix propagator

Recall that we can always formulate the dynamics for the reduced density matrix as

where

However we are NOT now going to do the usual Caldeira-Leggett trick of assuming a 

coupling between vortex and phonons which is linear in the phonon variables. 

This is not even true for a soliton coupled to its environment. 

What we need is another expansion parameter, and there is one – if the vortex moves 

slowly we can expand the coupling in powers of the VORTEX VELOCITY.

Vortex velocity expansion
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The vortex-phonon coupling is (in momentum space) 

A vortex is a stable solution of the Bose system; phonons arise from the very 
same degrees of freedom as the vortex: hence, there can be no first order vortex-
phonon coupling! 

wwwwwwwhereee



Velocity expansion (results)
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Rewrite in terms of the ‘center-of-mass’ coordinate R = (x + y)/2 and the 
‘fluctuation’ coordinate r = x - y. 
(An inertial term in this basis appears as Mr R in the density matrix propagator)..

..

From the real and imaginary parts of the influence functional phase:

xi(t)

xi(s)
|| damping force

refl damping force

||

refl

xj(s)



xi(t)

xi(s)
|| damping force

refl damping force

efl

Vortex eom
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The vortex equation of motion:

where FM is the bare Magnus force, Ff is the new path dependent force, FBC is 
any force due to boundary constraints,      is the random corresponding 
fluctuating force, and Fext is any externally applied force (eg. due to pinning or 
probing...)

    

Forces are memory dependent! Not surprising: the vortex is 
an extended object. Memory effects are introduced by 
including the non-instantaneous propagation of phonons.

Q

Q



Results cont’d
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The real part is interpreted (as usual in Caldeira-Leggett formalism) as 
the remnant after statistically averaging over a fluctuating force. 

Must check that the fluctuation-dissipation theorem is satisfied.



Fluctuation-dissipation theorem
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In momentum space (without approximation to 
the Bessel functions, however, without including 
their implicit time-dependence via Q(t,s))

eg.
A quantum version of the generalized 
(frequency dependent) fluctuation-
dissipation theorem is satisfied:

We haven’t properly Fourier transformed with the full time 
dependence, including the Bessel function arguments dependence 
on Q(t,s).



Results in momentum space
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In the limit J0 � 1 and J2 � 1 (which should 
correspond to the slow vortex limit V � c0):

where

� = 2� c0/a0 ultraviolet cutoff

� �

�, �

A log-divergent mass is the ‘typical’ result for a vortex effective mass. With 
appropriate length scales in a finite system (size RS): ln � ln RS/a0



What does this all mean??
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What is the vortex mass? What do memory effects imply? 

or frequency dependence?

The vortex equation of motion:

where FM is the bare Magnus force, Ff is the new path dependent force, FBC is 
any force due to boundary constraints,      is the random corresponding 
fluctuating force, and Fext is any externally applied force (eg. due to pinning or 
probing...)

   

The simple view of a particle with an effective mass acted 

upon by a set of forces is too naive: the ‘particle’ properties 

are governed by the forces present. 

The mass and damping depend explicitly on all applied forces!



To ensure non-trivial solutions, this yields the characteristic equation restricting 
allowed frequencies

Example: single vortex in a dot
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The equation of motion (dropping the fluctuating force for an ‘averaged’ motion)

where the bare Magnus force is balanced by the path dependent force and 
the interaction force with the image vortex (due to hard boundary conditions).

corresponding to eigensolutions with R x = ±iR y circular solutions oriented 
ccw/cw for � positive and real(� ) > 0 (with opposite orientation for negative 
frequency solutions.

Only one (complex) frequency solution: motion is a decaying spiral with 
ensuing motion independent of initial velocity!



Many-vortex dynamics
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As already realized in 1985 by Slonczewski (for a magnetic system), 
the dynamics of a collection of vortices do not diagonalize into 
those of a set of interacting particles.

For instance, in the magnetic system, the inertial energy is

A vortex under motion deforms (the system cannot respond 
instantaneously) while deforming in the presence of other vortices. 
The combinations entails off-diagonal (in vortex index) mass terms.



Many-vortex dynamics cont’d
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��� � ��

Q

Q

�� � ��

���

��

xi(t)

xi(s)
|| damping force

refl damping force

||

refl

xj(s)



Conclusions/Yet to come!

27

All results are in the ‘isolated’ vortex limit: 
What happens when the vortex lines (or analogously, 
the dislocation lines) intersect?
Can we derive effective dynamics for the intersection 
points? 
... toward a dynamic picture of an intersecting vortex 
network
... then add a superflow along this network: an 
effective model of a supersolid?!?


