

The Abdus Salam International Centre for Theoretical Physics

1959-4

Workshop on Supersolid 2008

18 - 22 August 2008

Optical investigations of disorder in solid Helium-4

F. Caupin ENS Paris

Optical investigations of disorder in solid helium 4

S. Sasaki^{*}, F. Caupin, and S. Balibar Laboratoire de Physique Statistique Ecole Normale Supérieure, Paris * now at Northwestern University

Supersolids, Trieste, August 19th, 2008

Yet another mystery...

Adriatico Guest House, Trieste, Italy, August 18th 2008

Outline

- > why grain boundaries???
- > one grain boundary (GB) between two grains
- GB melting: connection with classical systems
- liquid channels
- Consequences for mass flow
- crystals grown by different methods

A grain boundary

Monte-Carlo simulations of grain boundaries

Pollet et al. PRL '06

2 crystals truncated pyramidal shape with different orientations

generic GBs are superfluids below ≈0.5 K and ≈3 atoms thick

Grain boundaries cannot explain everything...

cubic network of GB lattice parameter •

effective superfluid thickness = 1 atomic layer a = 0.3 nm

 \Rightarrow = 3a ρ/ρ_s

if NCRIF = 0.1 %, \bullet = 1 µm

... but they might be involved!

how to connect two supersolid grains?

Observation of helium crystals

cubic cell : 11 x 11 x 3 mm³ 10 mm thick copper walls 2 glass windows (thickness 4 mm) indium seals stands 65 bar at 300K Straty-Adams pressure gauge (0 to 37 bar) connected through a CuNi capillary 50 mm long (int. diam. 0.6 mm)

Fast injection of superfluid at 100 mK

Sasaki, Caupin and Balibar *PRL* '07 45 bar in a bottle – fast opening of a valve on the fill line

inject_160507.mov

inject_160507_sample2.mov

Melting after fast injection

remove helium by opening slowly on a 25 bar reservoir

melt_160507_sample2.mov

Wetting properties of grain boundaries

growing-melting cycles to keep only 2 grains with different orientations

Dihedral angle

fit with Laplace equation near the cusp $\Rightarrow \theta = 14.5 \pm 4^{\circ}$

force balance (Young) σ_{GB} = (1.93 \pm 0.04) σ_{LS}

other crystals: $\theta = 11 \pm 3^{\circ}$ $\theta = 16 \pm 3^{\circ}$

agrees with values deduced from the groove depth

$$\left(
ho_{
m S}-
ho_{
m L}
ight)g\left(\Delta z
ight)^{2}=2\,\sigma_{
m LS}\left(1-\sin heta
ight)$$

Monte-Carlo simulations of grain boundaries

Pollet et al. PRL '06

2 crystals truncated pyramidal shape with different orientations

generic GBs are superfluids below ≈0.5 K and ≈3 atoms thick

Surface and interface melting

melting of a classical crystal often starts at its free surface in contact with the vapour

> even premelting (existence of liquid layers) at T below the bulk melting temperature T_m

> and what if no free surface, but grain boundaries?

complete wetting of the GB by the liquid seems possible if σ_{GB} = $2\sigma_{LS}$

premelting?

Grain boundary premelting

2D lattice gaz model: complete wetting at T_m and premelting

Kikuchi and Cahn '80 mean field

Besold and Mouritsen '94 Monte-Carlo

Grain boundary premelting

colloidal crystals Alsayed et al. *Science* '05 T_m=28.3°C

Grain boundary melting

bismuth films 50-100 nm thick Glicksman and Vold Acta Metall. '67 aluminum films 400 nm thick Balluffi and Hsieh J. de Physique C '88 GB thickness < 0.7 nm for T<T_m-1°C

Grain boundary melting

Franck et al. PRL '83 helium films, 50µm, fcc, high T – high P

BUT the interpretation of experiments on films needs to be reconsidered:

- the GB makes a groove at the LS interface
- the GB can open into a liquid channel on a wall
- \Rightarrow for thin films, the grains can detach
- \Rightarrow whereas in our experiment on helium, the grains are 3 mm thick

And now some theory

Lipowsky PRL '86 definition: $\Delta \sigma^{0}(T) = 2\sigma_{LS} - \sigma_{GB}^{0}$ liquid layer between two grains at T< T_m free energy per unit area: $\Delta G(t) = L (1-T/T_m) t + \Delta \sigma^{0} + V(t)$ minimize $\Delta G(t) \Rightarrow$ equilibrium thickness t

short range forces: $V(t) = K \exp(-t/\xi)$ for large t

if K>0

⇒ divergence $t(T) = \xi \ln[K/(T_m - T)]$ ⇒ $\Delta G < 0$ if $\Delta \sigma^0$ sufficiently negative ⇒ seen in simulations with

finite range lattice gas model or truncated L-J potential

Liquid layer thickness t

ree energy per unit area

And now some theory

long range forces (VdW): as both sides have same density:

large t: V(t) always attractive = -K/tⁿ
 with K>0

small t: repulsion can occur (repulsive cores, fluctuations...)
but t remains an atomic scale

Schick and Shih PRB'87

Wetting properties of grain boundaries

Liquid channel on the window

$$l_{
m c} = \sqrt{rac{\sigma_{
m LS}}{\Delta
ho \, g}}$$

capillary length

contact angle θ_c between the LS interface and the wall neglecting elasticity \Rightarrow hydrostatic equilibrium \Rightarrow pressure difference \Rightarrow curved interface, liquid on the convex side $P_L(z)$

 $egin{aligned} P_{
m L}(z) &= P_{
m eq} +
ho_{
m L}gz \ P_{
m S}(z) &= P_{
m eq} +
ho_{
m S}gz \end{aligned}$

 $R = \sigma_{
m LS} / [P_{
m S}(z) - P_{
m L}(z)] = {l_{
m c}}^2 / z ~~{
m for}~~z/l_{
m c} > 1.7$

 \Rightarrow requires $\theta + \theta_{c} < \pi/2$

Liquid channel under pressure

LS equilibrium possible above P_{eq} for a curved interface:

$$\mu_{
m L}(P_{
m L})=\mu_{
m L}(P_{
m eq})+rac{P_{
m L}-P_{
m eq}}{
ho_{
m L}}$$

$$\mu_{
m S}(P_{
m S}) = \mu_{
m S}(P_{
m eq}) + rac{P_{
m S}-P_{
m eq}}{
ho_{
m S}}$$

$$\Rightarrow P_{
m L} = rac{
ho_{
m L}}{
ho_{
m S}} P_{
m S} + \left(1 - rac{
ho_{
m L}}{
ho_{
m S}}
ight) P_{
m eq}$$

$$R = rac{\sigma_{
m LS}}{P_{
m S} - P_{
m L}} = rac{\sigma_{
m LS}}{\left(1 - rac{
ho_{
m L}}{
ho_{
m S}}
ight)(P_{
m S} - P_{
m eq})}$$

$$S=R^2\left[(\cos heta_{
m c}-\sin heta)(\cos heta-\sin heta_{
m c})+\cos(heta+ heta_{
m c})+ heta+ heta_{
m c}-rac{\pi}{2}
ight]$$

Contact angle hysteresis

liquid advancing: 55 ± 6 ° (copper) 51 ± 5 ° (glass) 53 ± 9° (graphite) liquid receeding: 22 ± 6 ° (copper) 26 ± 7 ° (glass) 37 ± 6 ° (graphite) larger hysteresis on rough copper than on a smooth glass wall

Liquid channel on the window

 $\theta + \theta_{c} < \pi/2$ $\theta \approx 15^{\circ}, \theta_{c} \approx 45^{\circ} \Rightarrow \text{channel}$

$$w(z) = rac{{l_{
m c}}^2}{z}\left(\cos heta - \sin heta_{
m c}
ight)$$

using $\theta = 15^{\circ}$, $\theta_c = 45^{\circ}$ $\Rightarrow l_c \approx 0.89$ to 0.97 mm

a calculation with $\sigma_{LS}=0.17 \text{ mJ/m}^2$ gives $I_c=0.98 \text{ mm}$

the channel closes for large z (or under pressure)

Direct nucleation of two grains

quick closing of a valve on the fill line sometimes allows to make two grains with similar orientations

Liquid channel between three grains

 \Rightarrow requires $\ heta < \pi/6$

Miller and Chadwick Acta metall. '67 Raj Acta metall. mater. '90

 $S=R^2\left[2\sqrt{3}\,\sin\phi\,\sin\left(\phi+rac{\pi}{3}
ight)-3\phi
ight]\,\,{
m with}\,\,\phi=rac{\pi}{6}- heta$

Liquid channels in ice

Nye *J. Glac.* '89 Mader *J. Glac.* '92

diffusion of impurities (dissolved gases) along the channels \Rightarrow possible bias in climate reconstruction Rempel et al. *Nature* '01

Liquid channels under pressure

Torricellian experiment

Sasaki et al. Science '06

Inverted test tube (diam.10 mm) solide grown at 1.3 K cooled to 50 mK height difference

 $\rho_{S} = 1.1 \rho_{L}$ \Rightarrow a change of the solid level inside the tube requires mass flow

Torricellian experiment

stress applied to crystallize the inside: outside at 1.4K et inside at 1.3K during a few seconds

 $P_f(1.4 \text{ K}) - P_f(1.3 \text{ K})$ = 0.3 bar fast growth under inhomogeneous stress \Rightarrow defects

grain boundaries make grooves at the LS interface many move and disappear, some remain pinned

No flow in good quality crystals

for 10 crystals with no or few grooves: no flow no leak along the tube walls

using numbers from the TO experiments : 1% superfluid density with $v_c = 10 \ \mu m/s$ \Rightarrow relaxation at V = $[\rho_s/(\rho_c - \rho_1)]v_c = 1 \ \mu m/s = 3.6 \ mm/h$

0.01% superfluid density with $v_c = 10 \ \mu m/s$ \Rightarrow relaxation at V = $[\rho_s/(\rho_c - \rho_L)]v_c = 1 \ \mu m/s = 36 \ \mu m/h$

Instead, experimental flow is less than 50 μm in 4 hours \Rightarrow V < 12.5 $\mu m/h$

Flow in the presence of grain boundaries

flow at 50 mK for two crystals with groove in the tube

Torricelli1_480x.mov 480x real time 1s = 8 min Torricelli2 480x.mov 480x real time 1s = 8 min

crystal 1: the flow stops when the groove disappears crystal 2: the flow continues until equilibrium is reached

Cristal 1: only one grain boundary

constant V : characteristic of superfluid flow

stops when the groove disappears (unpinning of the grain boundary)

Cristal 2: more defects

linear relaxation (not exponential)

two regimes: t < 500 s: 6 μm/s t > 500 s: 11 μm/s

the velocity increases when the LS interface reaches a region with more defects at the bottom of crystal 2?

Torricellian experiment revisited

mass flow in the tube (cristal 1):

along a GB

section w e w \approx tube diameter = 10 mm e \approx (1/3) x 3 a = 0.3 nm along the 2 liquid channels created on the wall

section = f(w,e)at a depth of 10mm : 870 μ m²

the measure interface velocity implies

 $v_c = 1.5$ m/s comparible to 2 m/s in atomic thick liquid films Telschow et al. *PRL* '74

 $v_c = 3 \text{ mm/s}$

one sample did flow at 1.13 K \Rightarrow liquid channels more likely

Torricellian experiment revisited

Elastic stress gradients

Rittner and Reppy PRL '07

P measured with a capacitive gauge P increases from 41 to 51bar after melting by heat pulse and quench cooling

> capacitive gauge connected with a capillary (i.d. 0.6 mm, length 50 mm) to the main cell

pressure relaxes, but not to $P_m(T)$

Trying to suppress the liquid channels

HOPG graphite

after pumping the cell 3 days: able to nucleate an oriented crystal

Crystals grown by the blocked capillary method

• start from normal liquid at high pressure and cool down: *path A*, *B* and *C*

• solid plug at a cold spot in the fill line \Rightarrow constant volume, if the plug does not allow flow...

 requires P_{ini} > 4.9 MPa otherwise liquid remains at the end (*path C*).

 \Rightarrow leads to polycrystals

hcp appears at multiple locations in the cell a few minutes after starting to pump the 1 K pot. cell volume V = 0.35 cm³.

The copper wall is colder than the liquid at the center of the cell.

coppel

polycrystalline film ahead of the growing interface

Melting a crystal slowly grown by BCM

accelerated 4 x 15 s = 53 s

Melting a crystal slowly grown by BCM

removing mass slowly through the fill line

liquid channels between grains and on the windows

smallest visible grains < 20 μm (1 pixel)

the grain size increases in a few seconds (ripening)

accelerated 100 x 8 s = 13 min

temperature gradient in the cell: 3 phases at $T < T_u$.

superfluid at *T* < 1.76 K: small temperature gradient ↓ surface tension becomes relevant ↓ more irregular liquid-solid (bcc) interface

 \Rightarrow larger grain sizes

At 1.66 K, all liquid is frozen only bcc and hcp remain

bcc disappears at 1.59 K

Fast crystallization from the normal liquid T>1.8 K

fast injection in the normal liquid ⇒ dendritic growth of solid*

dense tangle of dendrites with liquid regions

quench freezing the normal liquid may produce a similar tangle

* M. Maekawa et al. *PRB* '02 N.C. Ford et al. *JLTP* '07

Conclusion

- > no GB melting in systems with long range interactions, like helium
- > the Torricellian experiment is ambiguous: GB or liquid channels?
- the solids grown by the blocked capillary method may have a small grain size (<1µm)</p>

THANK YOU!!!

THANK YOU!!!