

The Abdus Salam International Centre for Theoretical Physics

1959-6

Workshop on Supersolid 2008

18 - 22 August 2008

Effects of crystal structure and statistics on defects and the elastic properties of solid helium

J. Beamish University of Alberta, Canada

Effects of Crystal Structure and Statistics on the Elastic Properties of Solid Helium

John Beamish James Day Alex Syshchenko

University of Alberta

Josh West Tony Clark Moses Chan ...

Outline

- **supersolidity** in helium TO experiments
- **shear modulus** anomaly in ⁴He
- **dislocations** in helium and elastic behavior
- ³He vs. ⁴He (and bcc vs. hcp)

⁴He phase diagram

Superleaks Persistent currents Second sound Hydrodynamic heat flow ... **Torsional oscillator**

Two fluid model $\rho_{He} = \rho_n + \rho_s$ superfluid component decouples $\Rightarrow I_{He} \text{ decreases}$ (frequency increases)

Kim and Chan (2004)

Bulk ⁴He: decoupling and amplitude dependence

TO decoupling and dissipation

E. Kim & M.H.W. Chan, Science 305, 1941 (2004)

Torsional oscillator measurements (confirmation of NCRI)

MHW Chan group (Penn State)

and 7 other groups:

Keio University (Shirahama) ISSP (Kubota) Cornell (Reppy, Davis) Rutgers (Kojima) KAIST (Kim) "supersolid phase diagram"

NCRI: ~0.015% to ~16% (in different cells)

- T_c : ~ same in different cells
 - ~ independent of pressure

What about other properties, e.g. superflow, elasticity?

Role of defects in supersolid behavior?

Annealing effects

(but not all experiments show large effects)

Rittner and Reppy (2006)

NCRI and dissipation reduced/eliminated

Role of defects in supersolid behavior?

Annealing effects

(but not all experiments show large effects)

Wide variation in NCRI (0.015 % to 16%)

(seems to depend on S/V ratio of cell)

Role of defects in supersolid behavior?

Annealing effects

(but not all experiments show large effects)

Wide variation in NCRI (0.015 % to 16%)

(seems to depend on S/V ratio of cell)

Sensitivity to ³He impurities

(for x_3 below ppm)

Theory/PIMC: "no supersolidity in a commensurate perfect crystal" (either zero point vacancies or defects needed)

Why measure the elastic shear modulus?

• "a solid is something which hurts when you kick it" - PWA

 i.e. a non-zero shear modulus μ at low frequency is a fundamental property distinguishing a solid from a liquid (and a supersolid from a superfluid?)

- it is a good probe of defect behavior (especially dislocations, which respond directly to shear stress)
- sound modes depend on both μ and ρ (measuring μ is complementary to TO's which measure ρ)

measure μ directly, at TO frequencies and low stress/strain

Shear modulus cell

Direct shear modulus measurements

Acoustic resonance in cell

 $f_r = \frac{v}{2L} \propto \sqrt{\frac{\mu}{\rho}}$

Frequency \implies sound speed

(modulus and inertia)

Amplitude/FWHM \implies Q

(dissipation 1/Q)

Temperature dependence of shear modulus of solid ⁴He

Modulus increases by ~8% below 200 mK (stiffening)

How does $\Delta \mu$ compare to NCRI in TO?

Modulus change vs. NCRI

Very similar temperature dependences! How similar?

How does $\Delta \mu$ depend on frequency?

Frequency dependence in TO

decoupling independent of frequency but onset shifts

dissipation peak

3×10²

Frequency dependence of $\Delta \mu$

Magnitude of $\Delta \mu$ does not depend on frequency

Transition is sharper and moves to lower T at low frequencies

Acoustic resonance at ~8000 Hz shows similar behavior

Temperature dependence of acoustic peak

Peak position (sound speed) increases below 200 mK Smallest peaks (highest dissipation) where peak shifts

Sound velocity and dissipation from acoustic peak

Sound speed reflects same changes in shear modulus $f_r \sim v \sim \mu^{1/2}$

Dissipation peak near onset of stiffening

How do resonance and shear modulus depend on amplitude?

Amplitude dependence of acoustic resonance (18 mK)

Peak position and shape constant at low amplitudes Dissipation 1/Q small at low temperatures

Resonance strongly amplitude dependent - what about µ?

Amplitude dependence in TO

critical velocity $V_c \sim 10 \ \mu m/s$

Amplitude dependence of $\Delta \mu$

i.e. $v_c \sim 0.1 \ \mu$ m/s at 2000 Hz but ~ 0.01 μ m/s at 200 Hz How does μ depend on ³He impurity concentration?

Annealing and stressing

Low T values unchanged – annealing affects high T behavior

 \Box low T shear modulus is the intrinsic value!

Annealing and stressing

Temperature (K)

Stress-induced changes anneal around 0.5 K

Torsional oscillator vs. shear modulus

Similarities:

- temperature dependence (onset T and shape)
- frequency dependence (magnitude constant, onset shifts)
- dissipation (peak where $\boldsymbol{\mu}$ is changing rapidly)
- amplitude dependence (begins at comparable stresses)
- strong ³He dependence (onset T and sharpness)
- annealing affects behavior
- And: amplitude/temperature hysteresis ("field cooled" vs ZFC)
 - $\Delta\mu$ anomaly still present in single (CP) crystals

New features:

- the "anomaly" is in the high T behavior (low T is intrinsic μ)
- applying stress changes $\Delta \mu$

Possible Interpretations

- 1. No connection between NCRI and our observations (i.e. the many similarities are just a fluke)
- Elastic stiffening at low T increases torsional oscillator frequency (i.e. apparent decoupling/NCRI is an experimental artifact or the low T transition is something else, e.g. to a glassy state)
- 3. Stiffening and TO frequency changes **both related to new state**
 - a) both are **intrinsic properties** of a supersolid
 - b) both involve defects **dislocations** weaken crystal and:
 - their presence allows supersolidity?
 - or
 - their motion destroys supersolidity?

2. Effect of elastic stiffening on oscillator frequency

Stiffening at low T will **increase** the frequency (i.e. mimic decoupling)

but wrong: magnitude frequency dependence

doesn't explain: blocked annulus, vycor/porous gold

Torsional oscillator results with solid ⁴He

Small NCRI (0.016%) in this cell (but around 25X shear effect) Dissipation peak associated with decoupling

"Known" facts:

- solid helium has dislocations ($\Lambda \sim 10^6 \text{ cm}^{-2}$ in fairly good crystals?)

Grain (sub)boundaries in hcp ⁴He (Iwasa/Suzuki)

"Known" facts:

- solid helium has dislocations ($\Lambda \sim 10^6$ cm⁻² in fairly good crystals?)

- edge dislocations glide easily in the basal plane (under shear stress)

"Known" facts:

- solid helium has dislocations ($\Lambda \sim 10^6$ cm⁻² in fairly good crystals?)

- edge dislocations glide easily in the basal plane (under shear stress)

- they are weakly pinned by impurities (³He binding ~ 0.3 - 0.7 K) and more strongly where they intersect

Frank net in annealed metals

"Known" facts:

- solid helium has dislocations ($\Lambda \sim 10^6$ cm⁻² in fairly good crystals?)
- edge dislocations glide easily in the basal plane (under shear stress)
- they are weakly pinned by impurities (³He binding ~ 0.3 0.7 K) and more strongly where they intersect
- stress tears them away from impurities
- they are damped by phonons at high temperatures $(B~T^3)$
- annealing removes some dislocations

Dislocations in Helium (continued)

Things we **don't** know:

- how many dislocations are there in real helium crystals? (especially blocked capillary polycrystals)
- -is there a Peierls barrier for basal plane edge dislocations? (or do they tunnel?)
- -are screw dislocations (and other edge dislocations) mobile? (important for flow, annealing and plastic deformation)
- what are kink energies in helium? are kinks delocalized??
- non-thermal plastic deformation (quantum metallurgy)??
- interaction of dislocations with vortices (pinning and phase jumps)???

Network and impurity pinning

$$\Lambda L_N^2 = 3$$

network pinning only

 $\Lambda L_P^2 \ll 3$

-N

impurity pinning

Effect of dislocations on shear modulus

low frequency/low temperature:

$$\frac{\Delta\mu}{\mu} \approx 0.5 R\Lambda L^2 \sim 30\%$$

Impurity pinning (e.g. ³He)

How can dislocations explain $\Delta \mu$?

³He pins dislocations at low temperature (\implies intrinsic μ)

Unpinned dislocation network weakens μ by up to 30% at high T ($\Delta\mu$ independent of frequency)

Large stresses unpin dislocations (amplitude dependence)

Annealing or stressing changes dislocation density/network and $\Delta \mu$

Even if you believe this, what is the connection to supersolidity?

What happens in ³He?

Look at modulus (Alberta) and NCRI (Penn State) in pure hcp ³He

Shear modulus: ⁴He vs. ³He

hcp (⁴He **and** ³He) shows low T stiffening (dislocation motion?) bcc ³He does not (dislocations not mobile??) onset T higher in hcp ³He (lower purity - 1.35 ppm ⁴He??)

Amplitude dependence in ⁴He and ³He

Same amplitude dependence in hcp ³He and ⁴He

Not in bcc ³He

Annealing effects in ³He and ⁴He

Same annealing in hcp ³He and ⁴He (modifying dislocation network?)

Annealing in bcc ³He not systematic (and crystals not as stable)

Torsional oscillator response in ³He?

hcp ⁴**He**: boson; $\Delta \mu$ anomaly; TO decoupling observed

bcc ³He: fermion; no $\Delta \mu \implies$ no TO decoupling expected?

hcp ³**He**: fermion; $\Delta \mu$ anomaly \implies ???

Torsional oscillator results with solid ⁴He

Small NCRI (0.016%) in this cell Critical velocity/amplitude

Dissipation peak with decoupling

Torsional oscillator results with solid ³He and ⁴He Josh West and Moses Chan (Penn State)

No NCRI signal from either HCP or BCC solid ³He !

Summary/Conclusions

Shear modulus and NCRI are clearly related

Modulus effects can be explained by **dislocation mobility and pinning** (intrinsic behavior at low T where dislocations are pinned)

Modulus changes do **not** trivially explain TO frequency changes (but make a small contribution: ~ 1% to 10%)

Modulus/dislocation behavior is essentially the same in hcp ³He (but different in bcc ³He)

Torsional oscillator decoupling only in ⁴He, not in hcp (or bcc) ³He