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Outline

Can the existing experiments on solid 4He be 
interpreted using “metallurgical” concepts? 
Which experiments require a “supersolid”
interpretation? 
Modeling torsional oscillator (TO) experiments: 
what does a TO actually measure? 

TO response function for a viscoelastic solid
Period shifts and dissipation

Modeling specific heat experiments
Binding of 3He to edge dislocations
Schottky anomaly due to 3He desorption from 
dislocations
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Torsional oscillator: rigid body

Equation of motion for a rigid solid:

Resonant period:

What happens if the solid 4He 
is not rigid?
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Equation of motion for a TO containing an 
elastic solid [Nussinov et al. (2007)]:

Back action: moment that the solid 4He exerts 
on the walls of the cell (linear response):

Oscillator response function:

The complex poles of the response function 
determine the resonant frequency and 
dissipation of the system.

Torsional oscillator: elastic solid
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All of the information about the solid 4He is 
contained in       . It has the following 
properties:

analytic in upper half frequency plane;
real and imaginary parts obey Kramers-Kronig
relations;
low frequency behavior must be a rigid solid:

To calculate        we need to solve the equation 
of motion for an elastic solid:

Hooke’s Law (nonlocal in time):

Elastic response of the solid
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Viscoelasticity

Isotropic elasticity:

Shear motion of an elastic solid: 

Navier-Stokes for a viscous fluid:

Combining (in “parallel”):

Kelvin-Voigt model (internal friction):

μ
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Cylindrical geometry, no slip boundary 
conditions (assume long cylinder):

Equation of motion: 

Solution:

Shear stress exerted by the solid on the cell:

Boundary value problem
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Integrate the shear stress over the area of the 
cell surfaces, multiply by the radius to find the 
moment that the solid 4He exerts on the cell:

Using              expand the Bessel functions: 

Find approximate roots:

Putting it all together
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Properties of results

TO is a probe of the shear modulus. The period 
shift and the dissipation are related!

Corrections vanish for a rigid solid.
The peak value of Δ Q-1 is independent of τ :  

At the peak,

For no dissipation,  changing the shear modulus 
changes the period (inertial overshoot):
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Fitting the TO experiments

Dissipation peak identifies long relaxation time 
on the order of 1ms                   . Dislocations? 
Model seems to only account for 10% of the 
period shift.  
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Conclusions?

Dissipation peak is accounted for naturally 
using a viscoelastic model. The derived 
timescale is much longer than microscopic 
timescales, suggesting a collective effect; 
dislocation depinning?
A period shift accompanies the dissipation 
peak, but only accounts for 10% of the 
observed shift. Is the remainder NCRI?
The period shift due to the dissipation is larger 
than the shift due to changes in the shear 
modulus. 
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Coupling superfluidity & elasticity

Dorsey, Goldbart & Toner (2006): Landau 
model with coupling between superfluidity and 
elasticity (strain dependent Tc):

Predictions
XY anomaly in specific heat (lambda transition)
Anomalies in elastic constants; shows up as a dip in 
the sound speed at the transition:
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Specific heat near the λ transition

Lipa et al., Phys. Rev. B (2003).

The singular part of the specific heat is a 
correlation function:

For the λ transition, α= -0.0127.

Barmatz & Rudnick, Phys. Rev. (1968)
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Specific heat I

J.A. Lipa et al., 
Phys. Rev. B 68, 174518 (2003).

High resolution specific heat 
measurements of the lambda
transition in zero gravity. 

Specific heat near the putative 
supersolid transition in solid 4He.

Lin, Clark, and Chan, 
Nature (2007)
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An alternative: lattice gas model

Edge dislocations in 4He provide 
an attractive potential for 3He 
impurities. 
Bound 3He impurities “evaporate”
from the dislocations, increasing 
entropy and producing a bump in 
the specific heat.
Divide the impurities into bound 
and free; two systems are in 
chemical equilibrium. 
Treat both  systems classically.
See T. N. Antsygina et al., Low 
Temp. Phys. 21, 453 (1995). 
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Hydrostatic pressure due to an 
edge dislocation (continuum 
theory):

Effective potential due to a 
volume defect       (Cottrell 
“atmosphere”):

Breaks down in the core due to 
diverging strains; need a cut off. 
The cut off will reduce the 
binding energy. 

Binding of 3He to dislocations
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Details: Quantum dipole problem
Schrodinger equation:

Variational wavefunction:

Variational estimate:

What about screw dislocations? Need nonlinear 
strains,                . See recent e-print by 
Corboz, Pollet, Prokof’ev and Troyer; binding 
energy                   .
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Specific heat II: some details

N 3He impurities, M defect sites that bind the 
impurities with energy ε . 
The defect sites have 0 or 1 3He impurities (two 
level system). Ignore correlations among sites 
and quantum statistics. 
Assume particles that have evaporated form a 
noninteracting gas.

Equate chemical potentials of the gas and the 
adsorbed particles:
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Properties

Calculate the molar specific heat at constant N; 
complicated expression. Roughly, there is a 
background piece (from the gas particles) and a 
bump (Schottky anomaly) from the adsorbates.
Two limits:

N>M (“saturated” case): size of the bump 
scales as M. 
N<M (“unsaturated” case): size of bump 
scales with N. 

Peak appears at a temperature T* such that  
.  The peak position depends on the 

3He concentration (weakly). 
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Sample comparison with data

Lin et al., Nature 449, 1025 (2007)ε=0.6K ; defect site concentration= 0.3 ppm
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Summary

Dissipation peak in the TO response is well 
described by a simple viscoelastic model. A 
long time scale is identified, probably from 
dislocation physics. 
The viscoelastic model only accounts for about 
10% period shift. Is the rest of the “spectral 
weight” at zero frequency? Is there a superfluid 
response? 
Specific heat feature appears to have a natural 
interpretation as a Schottky anomaly due to 
evaporation of 3He impurities from dislocations. 
Is the binding energy related to the Arrhenius 
behavior of the viscoelastic model?  


