

The Abdus Salam International Centre for Theoretical Physics

1959-9

Workshop on Supersolid 2008

18 - 22 August 2008

Search for supersolid behaviors in 2-D Solid He-4 and He-4 in nanoporous media

K. Shirahama Keio University, Japan

Search for supersolid behaviors in 2–D Solid ⁴He and ⁴He in nanoporous media

Keiya Shirahama

Department of Physics Keio University Yokohama, Japan

Torsional Oscillator Studies for :

 Solid ⁴He confined to a Nanoporous Glass (Pore Diameter : 25 A) Supersolid behavior observed

2. Two-dimensional ⁴He adsorbed on Graphite (Second layer solid on first-layer ⁴He + Graphite) Supersolid behavior observed Velocity-dependent frequency shift

1. Supersolid ⁴He in 25-A Nanopores

Hitomi Yoshimura Shunichi Takada Rama Higashino Yoshiyuki Shibayama Keiya Shirahama

Supersolid ⁴He in Porous Media Why interesting and important (even now) ?

Whatever mechanism underlies solid helium's odd behavior must also be able to explain Kim and Chan's original experiment, which looked at helium trapped in the tiny pores of Vycor glass.

Johanna Miller, Physics Today, Feb. 2008

Dislocation lines or vortex lines must be terminated at the wall. Their core sizes must be smaller than the pore sizes.

can discriminate theories and models.

Superfluid - Supersolid Junction

(Ray and Hallock, PRL 2008)

Phase Diagram of ⁴He in Porous Vycor Glass

⁴He in Nanoporous Gelsil Glass

 3D Network of Nanopores
 Pore Diameter : 2.5 nm 1/3 of Vycor Pore
 ⁴He atoms in Pores : "Inert" Layer near wall
 "Active" atoms inside

Localized BEC State of ⁴He in Nanopores

(Henry Glyde, 2000)

"Seeds" of BEC are created near T_{λ} , but they are not phase coherent in macroscopic scale.

Atom exchanges between the BEC's are suppressed by nanopores.

No macroscopic superfluidity (detected by torsional oscillator)

Evidences of Localized BEC

1. Flat Freezing Line Below 1K *JPSJ* 77, 013601 (2008) (Editors' Choice)

2. Heat Capacity Peak Just below λ - line

PRL **100**, 195301 (2008) (Editors' Suggestions)

3. Roton signal above Tc Neutron studies

> J. Bossy, H. R. Glyde et al. Preprint

No space for bulk helium inside the cell

V-dependent frequency at 3.77 MPa

Shirahama Lab.

Rough Estimation of NCRI Magnitude

Shirahama Lab.

Comparison of NCRI Magnitude with Other Exp.

Material	Characteristic Size	Approx. NCRIF (%)	Group
Gelsil	2.5 nm	0.3	Yoshimura et al.
Vycor	7 nm	2	Kim&Chan
Porous Gold	180 nm	7	Kim et al.
Aerogel		0.03	West, Mulders
Bulk, Annulus	< 100 µm	20	Rittner & Reppy
Bulk, Cylinder	~ cm	0.04 - 1	Many groups

Shirahama Lab.

Shirahama Lab.

Possible Phase Diagram

PRL **93**, 075302 (2004) *JPSJ* **77**, 013601 (2008) *PRL* **100**, 195301 (2008)

Remarks

1. NCRI comes from solid ⁴He in approx. 15 A pores.

2. No evidence of crystallizationis found in neutron studiesfor 25, 31 and 44 A Gelsil glasses.(Henry Glyde, private comm.)

Amorphous Solid ?

NCRI of ~ 0.3 % of the total mass is observed in 25 A nanopores at 3.77 MPa.

³He effect ? Coexists with LBEC ?

2. Two-dimensional solid ⁴He on Graphite

<mark>Yoshiyuki Shibayama</mark> Keiya Shirahama

Hiroshi Fukuyama (Univ. Tokyo)

Motivations for 2D Solid Experiments

1. Superfluid Behavior in Second-layer (possibly solid) ⁴He on Graphite (Crowell and Reppy, 1993)

2. Evidence for Zero-Point Vacancies in Second-layer ³He on Graphite (Matsumoto, Fukuyama, et al.)

2D solid ⁴He on Graphite: Zero-point vacancies are much more favorable than 3D bulk

Supersolidity induced by Vacancies in 2-D solid ⁴He?

Zero-Point Vacancies in 2-D ³He on graphite

Y. Matsumoto et al., JLTP, 138, 271 (2005) and submitted.

Low ³He densities: 2D Fermi fluid with strong interparticle correlation Effective mass m^* is enhanced by the correlation

Mobile ZPVs in 2D ³He solid strongly suggests that ZPVs also form and are mobile in 2D ⁴He solid. Moreover, because the ZPVs in solid ⁴He is Bose particle, it is expected that their quantum motion results in superfluidity of ZPVs, namely supersolidity.

Crowell and Reppy (CR) have found a peculiar superfluid behavior for the ⁴He films on graphite at the coverages between 17 and 19 nm⁻²

(Crowell and Reppy, *PRL***70**, 3291 ('93); *PRB***53**, 2701 ('96))

Experimental

- Grafoil (Exfoliated graphite)
- Commercial ⁴He (0.3 ppm ³He?)
- BeCu Torsional Oscillator
 The resonance frequency : *f* ~ 1016.4 Hz
 Q-value : Q = 1.5×10⁶ at 10 mK

Frequency shift

•At 1.4 layers, no frequency shift was observed.

 \rightarrow an inert layer state

•At 1.8 layers, a positive frequency shift was observed below \sim 300 mK.

•At 2.3 layers, the shift disappeared once

 Over 3.0 layers, ordinary superfluidity of adsorbed liquid films were observed around 500 mK.

• Frequency shift of the 18.7 nm⁻² sample

at various oscillation velocity

With the increase in the oscillation velocity, the size of the frequency shift $^{0.4098}$ below 300 mK decreases. At 1050 μ m/s, f(T) is not distinguishable $^{0.4096}$ from the empty cell data.

 The velocity-dependent frequency shift is a common feature to the case of bulk solid ⁴He.

 The present coverage corresponds to the one of the novel superfluidity of ⁴He (by CR) and of the novel ZPVs state in ³He (by Matsumoto et al.)

The observation can be associated with **superfluidity of ZPVs** in 2D solid ⁴He, namely **a 2D supersolid state** of ⁴He.

In the region over 3 layers (28.3 and 33.8 nm⁻²)

We observed both frequency shifts and the dissipation peak,
 which are attributed to ordinary superfluidity of liquid ⁴He films

•For the 33.8 nm⁻² sample, the magnitude of the frequency shift is independent of the oscillation velocity up to 3000 μ m / s.

 \rightarrow The frequency shifts are not associated with supersolidity.

Comparison: Crowell & Reppy PRB53, 2701 (1996)

 The surface tortuosity factor χ of Grafoil is 0.98 for ⁴He superfluid films.(Crowell and Reppy, *PRB*53, 2701 ('96))
 This means that only 2% of total NCRI value is observable.

If the χ factor for the present system is same size, the observed NCRI fraction 1.6% implies that the almost all the second layer ⁴He can be a superfluid (supersolid).

Summary - 2

Confirmed the Crowell-Reppy "reentrant" superfluidity
 Velocity dependence similar to bulk solid
 If it is NCRI, its magnitude is order of 10 – 100 % ?

