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The model Hamiltonian
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,n na a+ - the creation and annihilation operators of the hard core bosons. 

Only one boson can be located at a given site:  ( )22 0n na a+= =

Commutation relations for the operators ,n na a+
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The first term describes the tunneling between the lattice sites in the presence 
of vacancies, the second term (g>0) describes the tendency toward the 
formation of the crystal



Bethe-Peierls approximation

In this approximation the interaction of some  
particle at a given site with its nearest neighbors is 
taken into account exactly, and the interaction of its 
neighbors with the surrounding particles is taken 
into account in the self-consistent field 
approximation. The approximation is valid in case 
when the number of nearest neighbors z is much 
larger than one.



Wave function of the ground state in the 
Bethe-Peierls approximation
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2 2| | | v | 1,u + = 0 - wave function for the vacuum state

At the vacancies are present in the ground state and 
the wave function            is a coherent superposition of a 
state in which the given site is filled and a state in which 
the given site is empty
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The coefficients u and v are found from the condition of 
minimum of energy of the ground state (z is the number of 
nearest neighbors)
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The number of sites N is implied to be fixed.
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The quantity v2 should satisfy the inequality 21 v 0≥ ≥

The zero-point vacancies are present in the system if t>g

The appearance of zero-point vacancies is 
the threshold phenomenon



Microscopic model of the Andreev-Lifshits
state in a core of screw dislocation

Edge dislocation Screw dislocation



Screw dislocation in a two-dimensional crystal



Hamiltonian

( )

( )

( )

1 1
1

/ 2

1 2 1 2 1 2 2 2 2 2 1 2 1
1
/ 2

2 2 2 2 2 2 2 2 1 2 1 2 1 2 1
1

N

i i i i
i

N

i i i i i i i i
i
N

i i i i i i i i
i

H t a a a a

U a a a a a a a a

U a a a a a a a a

+ +
+ +

=

+ + + +
− − + +

=

+ + + +
+ + − − + +

=

= − +

+ +

− +

∑

∑

∑



Ground state wave function in the Bethe-Peierls
approximation
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Energy of the ground state
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The coefficients u1 and u2 are found from the equations
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Uniform solution
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corresponds to the supersolid state in the core of screw dislocation

with the energy (per particle)
3
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Non-uniform solution 1 21, 0u u= = with the energy solid 2E U= −
corresponds to the crystal state

Conditions for supersolidity

supersolid solid0 1,u E E< < <



The condition on tunneling amplitude under which zero-point 
vacancies appear at the dislocation line 
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The transition in the state with zero-point vacancies is a 
threshold one. 

One can expect that at the dislocation line t is large than in the 
bulk and the threshold is reached.



Critical temperature for the superfluid transition 
in a dislocation network

Zero-point vacancies emerge at the dislocation line. 

But the dislocation line is a one-dimensional object. 

Is it possible a genuine superfluidity along it? 

The answer on this question is the following. 

In real physical systems one deals not with an isolated dislocation line of 
an infinite length, but with a system of dislocations that crossed and form 
a spatial network. 

The transition into superfluid state may occur as a phase transition, and 
the temperature of the transition does not depend on the size of the 
system. 

It depends only on the length of the segment of the network.



Superfluid density

The behavior of  a system of  spinless one-dimensional bosons is described 
by the partition function written in the form of the functional integral.
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At low temperatures the main contribution to the partition function comes 
from the function that correspond to the extremum of S and from the 
functions close  to .

The condition of vanishing of the first variation of the action yields 
the equation for .

The solution 0 nΨ = n is the average one-dimensional density of 
bosons

The functions close to can be written in the  form
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The Fourier transformation for the   and   variables does not diagonalize the  
action (due to the presence of the term in the action)

The following substitution diagonalizes the action
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1/ 22( ) ( ) 2 ( )E k k n kε γ ε⎡ ⎤= +⎣ ⎦ is the Bogolyubov spectrum

The Bogolyubov spectrum emerges from the condition that the action  
is diagonal in    and      variables
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The result (the partition function Z) coincides with the partition 
function of an ideal Bose gas for which the particles with the 
momentum         have the energy E(k).k

The free energy of the system is equal to

( )( )ln 1 exp
k

F T E kβ⎡ ⎤= − −⎣ ⎦∑

The function F is an analytical function of the temperature. 
There is no phase transition in the system considered. 

If the fluctuations of at the extremum point are small  
the system behaves like a superfluid one.

Ψ



The current induced by wall motion 

Hamiltonian 0 vH H j= − , where
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is the operator for the current 

v is the velocity of the walls

The average current induced by wall motion is vnj ρ= , where
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∂∑ is the normal density

BN is the Bose distribution function, ( )1/ 2c nγ= is the sound velocity.



We see that at low temperature              . According to the Landau 
argumentation it means that the liquid in a one-dimensional wire can be 
superfluid

It does not contradict to the known statement that there is no 
superfluidity in a one-dimensional system of infinite length.

In our scheme we neglected a possibility of vanishing of the superfluid
density at some points,  called the phase slipping centers.

Such a neglecting is not justified in a one-dimensional system of
infinite length. But it can be done in description of thermodynamic 
properties of  two or three dimensional networks of crossed one-
dimensional wires.

The  appearance of phase slipping centers in a network should be
taken into account in the description of kinetics of the system above the 
temperature of transition to a superfluid state.

nρ ρ<

s nρ ρ ρ= −



Kosterlitz-Thouless transition in a two-dimensional 
regular network of one-dimensional wires

The Kosterlits-Thouless phase transition is connected with that the energy of the 
vortex pair diverges logarithmically at large distances between the vortices. 

At such distances the difference between the continuous medium and the network is 
not important and the equation for Tc should contain the two-dimensional superfluid
density for the network. 

In the case of continuous medium the critical temperature is given by the equation 
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where is a two-dimensional superfluid density2sρ



The equation for Tc should contain the two-dimensional superfluid density for 
the network. The latter quantity is equal to the number of superfluid bosons 
per a segment times the number of segments per unit area:

1
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network)

is the one-dimensional density of bosons 
at the wire

l is the length of the segment 

Critical temperature for the two-dimensional network
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High transparence of the vertexes of the network is assumed.  At low transparence the 
answer  may changed, see poster by Fil and Shevchenko on BEC in a 3D network 

1sρ



Rate for decay of quasi superfluid state in a two-
dimensional network 

(in collaboration with D.V.Fil)

We consider zero-point vacancies in the dislocation network as weakly non-ideal 
Bose gas.

In the absence of viscosity macroscopic rarefactions or solitons in such a gas 
move along the wire conserving their momentum.

In reality, the momentum and the velocity of the soliton does not conserve due to 
non-zero second viscosity and the velocity can go to zero.

At the moment when the velocity of a soliton goes zero the shift of the phase of 
the order parameter along the soliton is changed on       . It means that the soliton
is transformed to the phase slipping center. 

2π



Phase slipping centers in a ring

The       jump of the phase results 
in a increase or a decrease of the 
flow in a ring. The frequency of the 
former processes does not coincide 
with the frequency of the latter 
processes. The frequencies per unit 
length are given by the expression
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v is the superfluid velocity, is the coherence length, and       is 
the second viscosity
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Motion of a vortex across the flow in the network

an isolated vortex

Phase slipping centers that result in vortex motion across the flow

vortex moves left vortex moves right



In the absence of the flow the frequencies of the appearance of the phase-
slip centers are the same for the right and the left segments of the vortex 
centered plaquette. An average the vortex does to move. 

Under the flow these frequencies differ from each other. An average the 
vortex moves across the flow.  

The average frequency of a jump of a given vortex center n in the 
direction of its motion is

( )jump lν ν ν− += −
The frequency of the pass of this vortex across the network is
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The frequency of the pass of all vortexes across the network is
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Decrease of the phase shift and the superfluid velocity caused by the 
one vortex crossed the flow is
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Equation for the superfluid velocity
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Relaxation time
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Crossover temperature

experτ is the time of the experiment

If experτ τ> the relaxation of the flow does not occur

The equation for the crossover temperature
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The solution
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1. In the core of a dislocation, where the lattice sites are situated in 
“wrong positions” the intersite tunneling amplitude  increases 
considerable. The latter results in tendency toward formation of a 
one-dimensional “supersolid” in the dislocation core.

2. At rather high density of dislocations they intersect and form a 2D 
or 3D network. In such a network  zero-point vacancies  transit into 
superfluid state. The temperature of the phase transition  Tc is of 
order                 . 

3. Above Tc in a wide interval of temperatures (up to the temperature 
of degeneracy of zero-point vacancies                ) a specific quasi 
superfluid state emerges. While there is no the long range order in 
the system, one can say about the time dependent phase of the 
order parameter             and the superfluid velocity                                             
Relaxation of      is determined by the frequency of appearance of 
phase slipping centers. The relaxation time                     .
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Conclusion


