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Outlook

• Recent experimental and numerical results on 
‘supersolids’: basic facts and assumptions. 

• A scenario for dislocation induced 
supersolidity. 

• Analysis of the superglass phase (quantum 
jamming).



Basic Facts & Assumptions

• Starting from Kim & Chan (04) mounting evidence 
of a phase transition (or cross-over) in He4: 
supersolid phase?

• Perfect He4 crystals are not supersolids: no 
vacancy-induced supersolidity (Ceperley et al., Boninsegni et 
al.).  

• Very strong annealing effect: the role of disorder is 
crucial (Rittner & Reppy, Kim & Chan).



Two perspectives on disorder-
induced ‘supersolidity’.

• Disorder         dislocations in He4 crystals: 
dynamics of quantum dislocation, dislocation 
defects and supersolidity (motivated by PG de Gennes (06)). 

• Disorder         glass: superglass phase (motivated by 
Boninsegni et al (06), see also Nussinov et al (06)).  
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A reminder on vacancy 
induced supersolidity

• Classically, 

• Quantistically: 
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Classical path: all particles (and so the vacancy) stay fixed
Quantum paths: the vacancy moves along a closed path (the final 

configuration is a permutation of the initial one)



is the weight of a vacancy path of length n.wn

Z1 vacancy = Zno vacancye−βEv
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The vacancy creation energy 
is renormalized 
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Free energy obtained summing on the number and the 
positions of the vacancies

High T Low T



Fv|T=0 > 0→ φv ∝ e−βFv

Fv|T=0 < 0→ φv > 0
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Recover Andreev Lifschitz model

Supersolidity: infinite permutation cycles (Feynman-Ceperley)

Vacancy paths ‘concatenate’
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Tv, where Fv=0, is the characteristic 
tempererature for the evolution of the vacancy 

density 



• Numerical simulations have shown that Fv>0 so no 
vacancy induced supersolidity is expected.

• He4 crystals contain quenched-in dislocations.

• The dislocation network can become superfluid 
(Boninsegni et al., Shevchenko) however 
superfluidity along dislocation cores leads to too 
small superfluid density compared to experiments 
(cf Balibar, Caupin). 

• Dislocation can be a source of vacancies. 
Transverse fluctuations of dislocations may be very 
important. 



Dislocation defects are a 
source of vacancies with 

smaller Ev

2 important changes repeating the previous analysis:

• Smaller Ev may lead to a negative zero temperature Fv. *
• Vacancies paths start and end on dislocations.   

*Classically well known (pipe diffusion); quantistically (Boninsegni et al 07,08)



First temperature regime:Tc<T<Tv

• For T<Tv dislocation defects and vacancies start to 
‘proliferate’.

• The defect and vacancy proliferation is limited (no 
quantum roughening) by the elastic energy cost to create 
them: elastic repulsion between dislocation defects.

• In this regime the dislocation network resonates (or 
move)  between different distorted configurations.  

Dimensional argument to estimate the 
number of atoms belonging to the 

resonating dislocation network

f ≈ Fkφd +
1
2
Ga3φ2

d → φd ∼ 10−3



Supersolidity at T<Tc

• Vacancies generated along dislocation lines lead to 
transverse permutation cycles.

• The number of ‘superfluid’ atoms is enhanced 
compared to the estimate of Balibar and Caupin 
because dislocations resonate.

• At a certain temperature, Tc , the permutation 
cycles from different dislocation may ‘concatenate’ 
and lead to supersolidity.  What’s the value of Tc? 
Maybe too low?



Consequences & Predictions

• At Tv the elastic properties of the system change 
(analogy with polymer melts predict a stiffening).

• At Tv change in the specific heat that gets an extra 
contribution.

• Supersolidity sets in at a smaller temperature Tc.

• Tc, Tv affected substantially by He3 impurities (how?).

• In He3 crystals there will be no Tc but there may be a Tv!

Quantitative studies of quantum dislocations (kink-
antikink energy, dislocation motion, etc) are crucial!
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The superglass phase

• Study a model that shows unambiguosly a 
superglass phase.

• Obtain the basic static and dynamic properties of 
the superglass phase.

• Strategy: use a mapping between classical Brownian 
motion and quantum dynamics (Rokshar-Kivelson, 
Jastrow, etc...).



Classical-Quantum Mapping

• The probability distribution satisfies the Fokker-
Planck equation:
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• Define the quantum Hamiltonian:
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• The ground state wavefunction is                            (quantum 
averages become classical thermodynamic averages).

• Condensate fraction, correlation functions can be obtained from 
classical correlation function (a la Jastrow).

• Quantum real time dynamics can be obtained as analytic 
continuation of the classical Brownian one (Henley).

ψ({x}) = e−
UN
2T



Our model

• Quantum counterpart of Brownian hard spheres:

V (r) = V0 lim
λ→∞

exp(−λ[(r/σ)2 − 1])

• Quantum 2 and 3 body interaction: hard sphere plus 
sticky part at contact.



Phase diagram

φ = πρD3/6



Real time dynamics and freezing
Dynamical structure factor and imaginary part of the density 

response function

F (q, t) = 〈ρq(t)ρ−q(0)〉

The density profile freezes gradually into an amorphous 
profile (and similarly do the condensate fluctuations). 

The transition superfluid-superglass is first order.



Amorphous condensate profile

g̃(r) = N 1
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Conclusion & Perspectives

• Model with unambiguous superglass phase.

• Preliminary analytical computations on He4 show 
the existence of metastable superglass phase (cf 
Boninsegni et al.). 

• Properties of the superglass transition at finite 
temperature?

• Analysis of more realistic superglasses.    


