

1959-12

Workshop on Supersolid 2008

18 - 22 August 2008

Microsocopic studies of He-4 solid systems via Path Integral projection methods

D.E. Galli University of Milano, Italy

- random numbers with mean F_l and variance coming from the QMC errors estimation
- An optimization algorithm: we use Genetic Algorithms; several optimizations are performed using such random sets as "input" data; the average of the resuls is taken as the best estimation of $S(q,\omega)$

The Abdus Salam International Centre for Theoretical Physics - Workshop "Supersolid 2008"

Dynamics from QMC data: a genetic algorithm approach

- Typical values: resolution $\Delta \omega \approx 0.25 \text{ K}/0.5 \text{ K}$; range in ω [0-200/500] K \Rightarrow 400/2000 continuous parameters ($a_{i=1,\dots,N\omega}$) to be optimized!
- Constraints: non-negativity of a_i , zero-momentum sum rule
- Multi-scope optimization:
 - compatibility with QMC data
 - f-sum rule
- Our optimization technique relies on Genetic Algorithms:
 - An individual (chromosome) is a vector $[a_1...a_{N\omega}]$ of N_{ω} real numbers (genes) which take values in the codomains of the step spectral functions
 - The genetic evolution of a starting random population of individuals, aiming towards maxima of the statistical weight P(A), consists of:
 1) "fitness"-based selection (which depends on P(A))
 2) recombination and mutation processes, suitably redistributing the
 - spectral weight to increase the "fitness"
 - Typical values: #individuals ≈5000; #generations ≈ 6000

The Abdus Salam International Centre for Theoretical Physics - Workshop "Supersolid 2008" - 21.08.08

Dynamics from QMC: incommensurate solid ⁴He (1 vacancy & 1 ³He atom)

- We have studied also hcp solid at ρ =0.0293 Å⁻³ with one impurity ³He atom with (N_{4He}=178) and without (N_{4He}=179) a vacancy in order to study the dynamics of the impurity induced by the presence of this defect
- Presence of a vacancy: no evident effect on impurity dynamics; ³He atom is essentially fixed on a lattice position

• Once one has an algorithm which is able to find where vacancies are located it is possible to define their coordinates r^v which is a many-body variable because it depends on the positions of all the N ⁴He atoms

• With these vacancy-variables one can build a density fluctuation and an intermediate scattering function:

$$\rho_{\bar{q}}^{\mathsf{v}}(\tau) = \sum_{j=1}^{N_{\mathsf{v}}} e^{i\bar{q}\cdot\bar{r}_{j}^{\mathsf{v}}(\tau)} \qquad \mathcal{F}_{\mathsf{vv}}(\bar{q},\tau) = \frac{1}{N_{\mathsf{v}}} \left\langle \hat{\rho}_{\bar{q}}^{\mathsf{v}}(\tau) \hat{\rho}_{-\bar{q}}^{\mathsf{v}}(0) \right\rangle$$

which gives information on the imaginary-time evolution of these manybody degrees of freedom

Excited state properties from S_{vv}(q,ω)

The Abdus Salam International Centre for Theoretical Physics - Workshop "Supersolid 2008" - 21.08.08

