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Path Integral T=0 K projector methods:

e Study of pure 2D solid “He:
- Perfect crystal
- Crystal with increasing number of vacancies

e 3D: hcp solid “He

e Dynamics form QMC a genetic algorithm approach
- Excited states in liquid “He also with one *He impurity
- Excited states in solid “He also with vacancies and with

one 3He impurity
e Conclusions
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Projector QMC methods:
Path Integral Ground State

Sarsa, Schmidt, Magro, J.Chem.Phys. 2001

e Aim of projector Quantum Monte Carlo (QMC) methods: evaluate
“exact” (within statistical uncertainty) T=0 K, i.e. ground state,
averages

<I/’0 |0|UJ0> being 1y, the ground state wave function

e How? First v, is expressed formally as the imaginary time evolution of
a trial variational state

Yo(R) = lim [ dR' (Re™[R') - (R)

(<th [yy) = 0) G(RR,T)= <R‘e"’4

Many-body

R= {F]7F2" . '9FN} coordinate

R Imaginary-time
propagator

e Then one uses the exact property e ™ =(e‘%’q )P to obtain the Path
Integral representation of G(R,R’,t):

Wo(R) = lim [[dR---dR, <R‘e‘?” R1> Koox <1rep_1 e IR, > ¥, (R,)
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Projector QMC methods: WIS egli

Path Integral Ground State e Bulideg

Sarsa, Schmidt, Magro, J.Chem.Phys. 2001
e Approximation 1: finite imaginary time propagation

g
W, (R) =, (R) = [dR---dR, <R‘e ; Rl>x---x<RP_l R,,>¢T(RP)
e Approximation 2: if dt=t/M is small, use accurate approximations for
the short-time propagator G(R,R’,51): e.g. Pair-Product (ceperely, RMP '95)

this second approximation is exactly the one used in any finite temperature
PIMC calculation

e Therefore any PIGS calculation is characterized by two numbers:
- Value of t : the total imaginary-time
- Value of &t : the “elementary” imaginary-time evolution/projection step

YR — y R — ¥R

choice of 7 choice of 6t

e "

Usually, one first determines how small must be dt in order to use
approximation 2, then increases t until convergence is reached: if 0t and T are
properly chosen the exact value will be within the statistical uncertainty
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Projector QMC methods:

VETSiiadegll

Path Integral Ground State (e gniIano.
e Classical-Quantum mapping:
(o] Ah’ Fas wT(R )HG( Ry (R2P+l)\§
dR. OR +) T E— !

< 0 0> fll_ll o <1,U,|’l/)r> \'

P(Rl’“'5RZP+1)
Ground state averages are equivalent to canonical averages of a classical system
of special interacting linear polymers:

=2 22P+1
. "1 riP+l ~op r

e P projections:
linear polymers
with 2P+l atoms

e Monte Carlo sampling
(Metropolis) of
3N-(2P+1) degree

of freedom

+ s2)21440d WNjuONYP

—

r/=1,2P +1 < imaginary time
j=1,Ne———— particle

Imaginary time

[he Abdus Salam International CentreJoril heoreticarBhysics SVOrkSIop
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Variational theory of a quantum solid 552

In the framework of variational theory of quantum solids the wave functions
fall in two categories:

L. W has explicit translational broken symmetry, for instance by localizing
the atoms around the assumed lattice sites (R particle

- - N ¢ Q

lpJN(na-->rN)=IPJ X | | e eqiilibrium.;@ ;

! position /

(Jastrow+Nosanow)

— Sum over permutation to get Bose Symmetry S
by construction this wave function describes a commensurate solld

translational invariant W, first example:

- Memillan /
- - N . _ _ip/r) . 1965
Yy Gt = [ F(R-7l) F-e

=
- b: variational parameter, minimize (H) (Jastrow) 5

- at high density Wy describes a solid (spontaneous “/
broken symmetry) :

Second example: Shadow Wave Function -

=7 innce oewam (o2 mous/w)
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Our “exact” tool: Projector QMC

from SWF to SPIGS

e SWF: single (variationally optimized)
projection step of a Jastrow wave
function

Vitiello, Runge, Kalos, PRL ‘88

Y (R) = [dS F(R.S) Yy (S)

- Implicit correlations (all orders)
- Bose symmetry preserved

® SPIGS: “exact” T=0 projector method
which starts from a SWF
R

Galli, Reatto, Mol. Phys. 101, 2003
_1h
wy(R) = [dR,---dR,dS <R‘e :
_1h
R, JF Re S (5)
- Notice: unlike PIMC at finite T here no summation

over permutation is necessary, this W (R) is Bose
symmetric if W, is symmetric

X R,,_l‘e

[IVerSiia aegll
(U aiviiiario

Caleulation of (3, [Oly,)

Classical analogy
N triatomic

molecules
L gt e
A AL
> ! B
O §

N atoms
Rep o gu

O TSWF
LA L
=

o ‘,J
splck4

N open polymers

w&,
@“

.ﬁ’ﬁ

@

The whole imaginary time
evolution is sampled at each
MC step
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QMC: calculation of the one-body
density matrix with SWF and SPIGS

o (F.F) =N [[dry---dry y," (F. R+,

e One of the open polymers is cut and the

HIVETSIia tegll
(U aiviiiario

FN)’I)UO(F‘szan',FN)

Classical analogy:

N atoms

histogram of the relative distance of the O

two cut ends is computed

e We have studied commensurate and
incommensurate solid “He with SPIGS:

the periodic boundary conditions forces

the structure of the solid.

® No “mixed”,
ground state p, if T is large enough!)

only pure estimator (exact

O

/ .
SPIGS:

N open polymers

T

A
cut
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(S)PIGS: Permutation sampling T iy

e projection procedure preserves the Bose symmetry if W, is Bose symmetric

9. [} Q 0.
IE Off-diagonal calculation:
Y b > 4 frequency of an accepted
8 | s permutation cycle with N polymers
X T T X 10— T T T T3
® No topological sampling problems E'".. hcp solid *He, p=0.0293 A-3 ]
e It is important for off-diagonal properties 107 °- E
in the solid phase . 1
e Sampling scheme: Boninsegni JLTP (2005) 10 o
e “swap” moves allowed in off-diagonal f10° e E
calculations: high acceptance f c : ]
OTSO‘?:J{I:Z very high acceptance frequency 10°f Fis only about 5 o ]
9. 0 Q. [} F 1 ", 3
solid phase: ! ! o fimes lower fthan . ]
about 15% Y] o} ; —p Qz y in the liquid phase %
&% & Wk
2 3 4 5 6 7
X X N
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4 (versita deg
Commensurate 2D “He crystal T Mo

e We have studied pure 2D “He at T=0 K GFMC: Whitlock et al., PRB "88
e Propagator: pair-product with dt=1/40 K-! .| (Aziz potential, 1979)

® Eq. of state in agreement with previous T Ishee
GFMC calculations <’
Zz 4
Example: whole imaginary » \

time evolution: t=0.8 K-!

= each polymer counts Ol e "
64 particles -2
0.03 0.04 005 0.06 0.07 0.08 0.09 0.1
well defined crystal [A-2]
P
'»~,..A,‘»A"‘?57S"-‘
Analysis dfd On averaoge,  757 “ 75, A’757>»
particular . about 18% | st e e
(imaginary)time: '{‘2: of the atoms RO \
% _havea VWA aYAVANSTAVAYAVAY
. VAaYa WA A > P AV
wrong (#6) [ 1 i
Delaunay Voronoi coordination | : / : _. K "7  Ay
triangulation  diagram number AAVAVATAYSS AN AR 9%
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“Exact” ground state methods use

[IVersiiaaegll
a trial function “dadsls
2D solid “He p=0.765 A-2, triangular lattice '™, 03
A- OPIGS
e Is this biasing the results? foosmes 026
o . 1.60 |
o We project on vy, starting Debye-Waller factor: e-2W
from two completely g L { 022
different wave functions: Z 150 ) ) ) z
a) a Jastrow-Nosanow : c 01®
- not Bose symmetric
- not translationally 1.0 8
invariant 101
b) a SWF:
- Bose symmeftric 130

- translationally
invariant

2

From the t evolution one can get the overlap |<1Po|¢fria/>
Overlap per particle: 99.8% for SWF , deviation 0.2%
97.9% for JN, deviation 2.1%

SWF is closer to y, by one order of magnitude

[he Abaus Salam International Centre for il heoretical BhySicSEVOrkSnop RS Upersold 2o
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One-body density matrix

L]
direction

Triangular lattice, N=240
Convergence of p; computed with

SPIGS and PIGS for increasing
projections in imaginary time

e Conclusion: convergence both for 10 — S"G'gs
diagonal and non diagonal quantities Pl
from two radically different wave
function 1o SWF (6=0 1"

. !

The 2D commensurate crystal
has no BEC

No size effect (N=180,240,480)

With PIGS we observe exponential
decay up to 60 A

No ergodicity problem: study at

fixed t with decreasing ot

(increasing number of particles in the
polymers) gives the same results

[he Abaus Salam International Centre for il heoretical BhySicSEVOrkSnop RS Upersold 2o

Calculation of p, along nearest neighbor

(IVersiiaaegll
Laardiaviliario

2D solid “He p=0.0765 A-2

(Vitali, Rossi, Tramonto, Galli, Reatto: PRB 2008)

p,(r-r"

I

=01 K™

¢ | s SR S S

8

30 40

of




Results: full p, and PO i
the momentum distribution Ueil) ) Ll

one-body density matrix

Jastrow-Nosanow:

Shadow wave function:

x-x"<0 : PIGS We find NO BEC,

x-x'>0 : SPIGS h p,: dominant

PIGS & SPIGS 107 exponential decay in
indistinguishable e the large distance
within statistical "y range.

. o (A)
uncertainty Bumps over the exponential decay: vacancy-interstitial pairs

Deviation of the momentum distribution from
the Gaussian

There is an excess of particles at low
momenta up to k=1.2 A-l

whereas there is a deficit in the k-space
region around k=1.6 A-!

2 K, (A

The’Abdus Salam International Centrefori heoreticallBhy WVOTKSNIOP RO UPETSolid 2005 g 106 UG |

Question: can we get away from Overeita degl
using a trial wave function? Yes! —

e Path Integral projector methods: the propagator does not depend on y;
e Path integral ground state starting from an ideal gas wave function:
Y, = li_I)E e—1,+7¢ when ¢ = constant
e Even in the solid phase we Foungl again convergence of diagonal and off-
diagonal properties!

radial distibution function

—— =SPIGS
——- = Cost.

p & ’ e x-x" (&)
r 3 ¢ = Jastrow-Nosanow ¢ = constant

The’Abdus Salam International Centrefori heoreticallBhy WVOTKSNIOP RO UPETSolid 2005 g 106 UG |




ODLRO- Commensurate state:

3D hcp solid “He

e Calculations of the one-body
density matrix at T=0 K near
melting density p=0.0293 A-3

e N=360

Propagator: pair-product

dt=1/40 K- 16°
® Sampling along nearest neighbour

direction = 10°
e Plateau dramatically reduced by\ii 10° Tl

the projection procedure e B \
e Exponential decay up to about R SPIGS: t=0.1 K"

27 A o e
e Convergence essentially reached 1;20 T mg:g:::rf;f)"’““'“’

between SPIGS and PIGS

% 10 20 30
r-r’ (i\)
al GentrefforjiheoreticaliZnysICSEVVOrkSHop R UpersolidiZ00c e fi06 UG
Solid “He: the end of the MOBrSIa degli
SIUaiViianc:

Andreev-Lifshitz-Chester scenario

Boninsegni et al. PRL 97, (2006): study of hcp solid “He
e A uniform dilute gas of vacancies is thermodynamically unstable
against separation into a vacancy-rich and a perfectly crystalline
vacancy-free phase, which does not melt
e Three vacancies cluster easily and form a tight bound state

Recently we have started a systematic study of multiple vacancies in
2D and 3D solid “He
How can we identify where a vacancy is located?
1. Given a configuration {r}, find the best reference regular
lattice {R;} which maximizes a Gaussian local density N &A aff R )
y P = 226 (i-%)

(In our algorithm the centre of mass is not fixed)
=1 i=1

~

2. Find the vacancies with a coarse-graining procedure which associate particles
to the nearest non “occupied” lattice sites
3. In the end vacancies are defined as unoccupied lattice positions

The Abdus Salam International Centrefor I heoretical PnYSICS Sl/VOTkSHOPRoUPETSONd 2000 e 10605,




Vacancy-vacancy correlation functions

3D hcp solid “He p=0.0293A-3
(Propagator: pair-product, 8t=1/40 K-!)
gu(r) for a crystal with 3 vacancies
with increasing projection-time
gw(r) : exponential decay+vanishing
plateau with ©

NIVeTSiia aegl i
n...u.uullt:uu

2D triangular solid “He p=0.0765A-2
(Propagator: pair-product
1=0.75 K-! 81=1/40 K1)

g,(r) : exponential decay
= bound state up to é vacancies

100

= probable bound state
10% T T -
0f 32
- .'.
10°F @ =0 K-! (SWF) ft ';: "
< © 1=0.25 K-! € ° Bl
4 o 1=0.5 K-! ° 2% &
o L 2
0% *I %% o,
0.8 K- 0 W
o T=0. -
104 (preliminary) ¢ %;1
.
I I L 0
10 20 30 40 0 10 20 30
r (&) r (A)
Centre for ] heoretical Pl1ysSICS SVVOTKSTOp RS UPersold 2006 S 10605
Putative many vacancy states: it el
SUIGTEIVIIENG S

do we still have vacancies?

e Vacancies in 2D form a bound state
(binding energy for 2 vacancies =1.5 K)
e Bosons with attractive interaction collapse
e Can vacancies be present in solid “He at low T?
N-3 Bosons are not equivalent to 3 Bosons
= Why? Many body interactions
Stochastic dynamics

of a cluster of
vacancies:

first 1000 MC steps; QVVVUVVVY

QUIPVVUVDVIVIVVVY
o

only the reference YOOIV
lattice is shown (c. of ‘t’;’;’ " ° Y J’J‘J‘J
mass is not fixed) and EEEEEEErrrryr

vacancies with black J’J’ ’JJ)J) \¢ “J’J’ AL

spheres where these
are found every 50
MC steps

-
[PRE RS RS R R R R R R R R R R

DIV IIIIIWIIVDVWRWY
[FRS RS RS RS RS R U\JJJJ o
PIVIIIIIVIIVIVWIY
P9 g 99
9w [FRS RS A Jo
VUV IIIIIIIIIIIY

UQJJJJQ\)J @ o
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Edge dislocations in 2D solid “He T i

® Many vacancies: linear structures of vacancies are found unstable
against the formation of edge dislocations (point like defects in 2D)

e These different kind of defects are found stable and very mobile

g

T S S A T Ch 2GR0 B
S e e
2y 9% g o ab'iu&%&?éaz«%f&i St 7S

IR G RS SR e o N %ﬁ%*

Sy BV G #m}s’iﬁﬁiéuﬁ 3 Y, i 72 U5 L0000 SHis oo
gy Sl e BATTRTSVY i Wﬁ#ﬂ

S 5 XL S & 7 4@%

W A 1&?
L)

% "m :
P
%&D
&% T2

k2rpe:
 §9 % 6 o
g;«’?qéan

y- ' 21
3 S0 06 B,
2 ) 4 - 4

UBEIHTFS Mﬁ%ﬁf 1
[Zsﬁ%aaﬁqaa B BBE Y

e Open question for a similar mechanism in 3D: are clusters of many
vacancies unstable against the formations of dislocation loops?

e New 3D simulations under way

The’Abdus Salam International Centrefori heoreticallBhy WVOTKSNIOP RO UPETSolid 2005 g 106 UG |

Few vacancies and the condensate T i
o 2D solid “He, p=0.0765 A2 "o

(v=0.775 K-, pair-prod. dt=1/40 K-!) s

1e-05

e 1 vacancy induces a condensate (but ==
not in the thermodynamic limit)

e Few vacancies suppress the condensate * 5

vac

wononon
Eal o ad
x X x x
wononon

<

. 3 vacancie
S

o .

-

5 7 20
A0 x-x" () 4 - (A)

[£ EI “
20 el 30 0 X
The’Abdus Salam International Centrefori heoreticallBhy WVOTKSNIOP RO UPETSolid 2005 g 106 UG |
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Few vacancies and the condensate

10"

e Few vacancies suppress the condensate
e—-en,=1,x,=0.004

e 2D solid “He, p=0.0765 A-2 10 | oo n.=2,x 20004
(v=0.775 K-, pair-prod. dt=1/40 K-!)

2

50

ns=2 X,0.012

]

Many vacancies (= edge dislocations)
and the condensate

e Dominant contribution to the tail of p, 2D solid “He, p=0.0765 A-2
Half polymers in dislocation cores (v=0.775 K., pair-prod. dt=1/40 K1)

x-x" ()
transfer a particle from one
10 vacancies in a box with 240 lattice sites dislocation to a different dislocation

=> Phase correlation transmitted from one dislocation to another
2005 92 130505 ]

12



ODLRO & edge dislocations T Wiy

e Off-diagonal long range order (in the plane) induced by the presence of
edge dislocations

e Open questions: dependence on concentration of dislocations; relevance
in 3D?

\ e——en =2, x, =0.004
n, =10, x, = 0.021
\ n, =10, x, = 0.021
\
L,
\M
[ J 0 10 20 30 40 50
R RO r-r (A)
x-x" (R)
The Abdus Salam International Centrefor il heoretical EnysSIcS SV OTkSHOP RS UPETSONa2000 e TG 06,
Vacancy excitation spectrum: PVEPSTte deo
(A iVIIiano’

Shadow Wave Function

e With the SWF technique we found a way to study the vacancy
excitation spectrum (Galli, Reatto, PRL 2003; JLTP 2004):
- We associated one extra-shadow which localizes in the void
of the vacancy in order to study the excitation at finite quasi-

momentum

000000
-
W (R) = [[dSds,F(R,S)W, (S)L(S.5,)e™ " |58 8000
000000
Shadow-extashadow explicit correlations O O O O O O

- The inclusion of the extra-shadow improves the variational
energy

- Integration over extra-shadow is a way to change locally the
effective many-body correlations around the vacancy

The Abdus Salam International Centre fori heoretical BlySICS STk SHOP RS UDETSONd 2006 SP 0605
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Vacancy excitation spectrum MverSita del

(SWF result) tieh) ) Ll
Galli, Reatto, PRL 90, 2003; JLTP 134, 2004
hcp fcc bce
20 5
]2 K i L [100]t o ® [100] o SWF result
BN . ’ — n.n. jum
E t el \ P

model best fit

S5 [ITM [110]

Ui R e Near melting
o —/\. / \i /\ density

15 |[TA [111] R [111] 0=0.029 A-3
10
3 /A\ /i\ residence time

0 1 2 3 0 1 2 3 0 1 2 3 4 5 B (hep) »
kAT KA KA T= A= 0.6 x 10 sec
m”=0.31m, m*=0.39m, m*=0.3m, only 4 (and 2 in

m*=0.39m, (T'A) bec) time larger
e Vacancy very mobile, in agreement with recent experiments| than the period of

Andreeva et al., JLTP 110, 1998 hihgh Frgqu::cy
. . phonon in the
e Band width decreases at larger density crystal
1 he Abdus Salam International CentreJorgrneoretical BhysIcS SV OrkSOP RS UPETSold @005 S UG 00|

Dynamics from Quantum Monte Carlo it il

e We wish to evaluate the dynamic structure factor of a collection of
strongly interacting bosons at T=0 K in order to extract information
about the elementary excitations spectrum of the system

S@w) = [~ e (PP 0)

e The “exact” SPIGS method gives access to the imaginary time
evolution of quantum particles at T=0 K :

- 1. A
Voerw  F@D=—(p(mp40)
ps(1) = E e’ Intermediate N o ,
q Jj=1 scattering function Whole. imaginary-time
Density fluctuation Tror = 2ndt evolution

=l ly) = | o oo ¥

W,

internal” imaginary-
time evolution: ly,l?

=0 Ty =2moT

The Abdus Salam International Centreforirheoretical PRySICS Sl/OTkSHOP RS UPErsolid 200 S 05 0S .




Dynamics from QMC

1 . p;(t =167)

F@G.0) =—(p(Dp4©)  p.
m )

e Imaginary time formulation of (
QMC methods makes difficult ( T T
to study the dynamical )
properties of a Bose fluid, Ty = 2MOT
allowing to evaluate correlation functions in imaginary time, only for a finite
set of “instants” (which depends on the time step dt of the algorithm) with
unavoidable statistical errors

e The inversion formula is thus ill-defined: F(a,‘c) _ f(:mda) e_wTS(E],CU)

Y
I
T-MZ
_NI
a1

e Hence the necessity of recast the problem in the language of probability
theory: what is the best prediction of S(q,w) when our knowledge is limited to
the data coming from QMC (with errors) and to a few exact properties (non-
negativity and sum rules)?

e No other constraining prior knowledge should be assumed (e.g. Maximum
Entropy which it is know to force smoothness of the obtained S(q,w) )

[he Abdus Salam International CentreTioril heoretical FnysSICS VYV OrkSHOopRS UPeTSolid iz 005 o.US

Dynamics from QMC: (
our statistical framework el LA IS

e A functional space of step spectral functions satisfying the constraints of non-

negativity and zero-momentum sum rule: N,
A((U) = Ei:]aix[wf -wm] ((1))

+o - N, - (O]
[ dos@Gw) =Y, “ar0=5@) a, € [0,+) A©) [mh

w
e A statistical weight which accounts for the QMC data (and eventually for the f-
sum rule) to be maximized:
2

P(A) x exp[—Ela, (F, - f Omda) e"”"S’A(a))) [3’(|§|2 / 2m - f Omdw a)A(w))]

(/" dows@G.o -4 /2m)

e An “averaging” strategy to take into account the role of the statistical noisy in
the QMC data: given the data F, , new random data are generated as Gaussian
random numbers with mean F, and variance coming from the QMC errors
estimation

e An optimization algorithm: we use Genetic Algorithms; several optimizations are
performed using such random sets as “input” data; the average of the resuls is
taken as the best estimation of S(q,w)

[he Abdus Salam International CentreTioril heoretical FnysSICS VYV OrkSHOopRS UPeTSolid iz 005 o.US
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Dynamics from QMC data:
a genetic algorithm approach

Typical values: resolution Aw=0.25 K/0.5 K; range in o [0-200/500] K
= 400/2000 continuous parameters (a;, _\,) to be optimized!
Constraints: non-negativity of a; , zero-momentum sum rule
Multi-scope optimization:
- compatibility with QMC data
- f-sum rule
Our optimization technique relies on Genetic Algorithms:

- An individual (chromosome) is a vector [a,...ay,] of N, real numbers (genes)
which take values in the codomains of the step spectral functions

- The genetic evolution of a starting random population of individuals, aiming
towards maxima of the statistical weight P(A), consists of:
1) “fitness”-based selection (which depends on P(A))
2) recombination and mutation processes, suitably redistributing the
spectral weight to increase the “fitness”

- Typical values: #individuals *5000; #generations = 6000

[he Abdus Salam International Centrefor JI heoretical PhysIcS SWVOrkSnop gsupersolid 200s. 205
Dynamics from QMC data: W ot £
O IVIIArO A

a genetic algorithm approach

Naturally, the finite set of available data, the unavoidable statistical
errors of QMC data and the highly singular Laplace transform
inversion operation induces to think that the number of features we
may extract has to be limited

In order to realize what could be the maximum of information
available we devised the test of studying inversion problems such that
the analytical solution is know 025

Results in good agreement with the model: | . |
Essentially the optimized Sga(®)=0 only | GA optimized S(w)
when S()=0 '

0.15

S(w) | |
Slight underestimation of the width o1 | ,S(@) ]
of the peaks 00s ‘f N R
Some overweight between peaks when L Wl
they are near 0 ° - % o

= Very promising method fto extract at least excitation energies

[he Abdus Salam International CentreTioril heoretical EhySICSEWVOrkShopRs Upersolidz00s 808
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Dynamics from QMC: “He liquid T Mo

e Our first application: liquid “He, at equilibrium density p=0.0218 A-3 (N,,,,=256)
e Details: Pair-product propagator 8t=1/160 K-1; t,:20.6 K-1; 1;;=0.2 K-!

® Sharp feature in S(q,w) indicating the collective excitations

e Good agreement with the experimental excitation spectrum

25
12
——— Experiment
20 © This work
E' roton
08 F r—1q=1.94A-‘ ////
T ! g® s j\{ /
5 | — /// AN !
EX ' Z 7 e /
g :- w 10 /' ﬁ\\j//
$04 ' / /
(2] (L4 / /
I 51 7 !
i /" Cowley and Woods, Can. J. Phys. ‘71
L
|
0 —"-l ) - SErE 0
0 10 20 30 40 (] 0.5 1 1.5 2 25
-1
@ (K) q (AT
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Dynamics from QMC: AVeTSite ooyl

“He liquid + 1 3He atom el Jh UL

e We have studied also a liquid “He system at p=0.0218 A-3 doped with
one 3He impurity (N,,,.=255)

,0%3)(17) T ® F,(q.7) = <p%3)(r)f)f?(0)>

e Good agreement with experimental 2
impurity branch
05 ,
: 15
|
0.4 | —~
I = mq=138A" X
— " a=t :10 - Fak et al.
7 03 T PRB '90
z 1 iy \ %
L= \
302 | 5 W
& : §/ ® impurity branch
04 iy 7 collective modes
: ::' . ——— Exp. data
| [ ]
E | !! A alia 0 —
% 10 20 30 a0 0 ! -1 2 3
o (K) q (A7)
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Dynamics from QMC: - oot
SOIid 4He () i Milano'

e The same technique can be easily extended to study longitudinal
phonons in solid “He (hcp solid at p=0.0293 A-3; (N,,.=180)

e Sharp feature only at small energies where we find good agreement
with available experimental data

Experiments: courtesy of
e Wide peaks at higher energies

J. Bossy, H. Godfrin, and J. Goodkind
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Dynamics from QMC: incommensurate ... ...
solid “He (1 vacancy & 1 3He atom) el ff Wlieh

e We have studied also hcp solid at p=0.0293 A-3 with one impurity 3He

atom with (N,,,.=178) and without (N,,.=179) a vacancy in order to
study the dynamics of the impurity induced by the presence of this
defect

e Presence of a vacancy: no evident effect on impurity dynamics; 3He
atom is essentially fixed on a lattice position

3.0 3.0
(N1o=179; Nj,.=1) (N,o=178; Nj,.=1)
——— q=035A" q=035A""
~20 q=070A" ~20 q=070A"
. —q=1.06A': v q=1.06 A"
~ = ~ -1
3 q=141A 3 q=141A
g 4
§1.0 510
"8 "8 .
1 vacancy is present
0.0 0.0
0 2 4 6 8 10 0 2 4 6 8 10
o (K) o (K)
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Dynamics from QMC: AT Bogl
vacancy excitation spectrum (method) il
e Once one has an algorithm which is able to find where vacancies are

located it is possible to define their coordinates r¥ which is a many-
body variable because it depends on the positions of all the N “He atoms

o Best
reference [— vacant site
lattice ; >
O atoms

e With these vacancy-variables one can build a density fluctuation and
an intermediate scattering function:

VG (T - 1 /ay, v
= R @)= (B0 0)

v
which gives information on the imaginary-time evolution of these many-

body degrees of freedom
e Excited state properties from S, /(q,»)

The Abdus Salam International Centreori heoretical BhysicS SVVOrkSHOPRSUPETsolid 2003, (A%

Dynamics from QMC: AIVerSTts egl
vacancy excitation spectrum (result 1) il

e Excitation spectrum of 1 vacancy
in hep solid “He at p=0.0293 A-3

e Pair-product propagator:

dt=1/160 K-1; 1;5%0.6 K-1; 1,;%0.2 K-!

e Old SWF results: not so different
from SPIGS; band-width in
SPIGS results is more isotropic

® - SPIGS O = SWF

e Tight-binding hopping model < -3 .

analysis of the vacancy spectrum: € °| _ N ° 1™
worse agreement than with SWF “ o ﬁ

e |ower band-width = higher

effective mass: s —e=y A
m,/m,=0.43(1)-0.55 . g A f 7

e Evidence of roton-like modes at 00 05 10 15 20 25 30 35

the reciprocal lattice wave vector k (K"
The Abdus Salam International Centreori heoretical BhysicS SVVOrkSHOPRSUPETsolid 2003, 808,
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Dynamics from QMC: Versita degl
vacancy excitation spectrum (result 2) et didcu

40
» E. Blackburn et al.
" arXiv:0802.3587

e Excitation spectrum of many (N,=1-6)
vacancies (clusters?)

e Roton-like modes with increasing energy
with the number of vacancies

Energy transfer (meV)

e Open question: connection with recent

roton-like modes recently measured with 5| ¢
neutron scattering? 10|
15
Dynamical structure factor
at the I'A reciprocal lattice vect.
Nv;2
10 —— N,=3
1 N,=4
< N6
2
g
) l
(]
% 5 10 15 00 05 10 15 20 25 30 35
o (K) k (")
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Conclusions P iy

[aaraiviiaro:

Path Integral projector methods (T=0 K)
a T=0 K simulation method as unbiased as the finite T PIMC
2D and 3D Solid “He: commensurate crystal has NO BEC
2D Solid “He:
- Few vacancies [1-6] form a bound state
- More vacancies: formation of linear structures
= local collapse of the crystal & formation of edge dislocations

- Different dislocations induce particle permutations across the system
and this induces phase coherence

- Open question: relevance for the 3D case? (dislocation loops from
clusters of vacancies: study underway)

New method based on Genetic algorithms to obtain dynamics
from QMC:

- Evidence for roton-like vacancy modes in hcp solid “He
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