

1959-11

Workshop on Supersolid 2008

18 - 22 August 2008

Brief introduction to the field

M. Chan Pennsylvania State University, USA

Superfluid and supersolid

An introduction at the ICTP 'Supersolid 2008' workshop

Moses Chan

The Pennsylvania State University Supported by National Science Foundation

Where is Penn State University?

The Pennsylvania State University

American elm trees

Beaver Stadium

Outline

- Quantum mechanics at low temperatures :de-Broglie wave-packets, Bose-Einstein Condensation in vapor and liquid.
- Experimental principle for the of observation of Superfluidity: Torsional Pendulum
- Observation of superflow in solid helium

Quantum Theory simplified: Thermal de Broglie Wavelength; λ_{dB} (1924)

A particle, *e.g.*, an atom, electron, elementary particles, and indeed all objects can behave like a wave.

 k_BT is a measure of "energy of motion"

Classical and Quantum pictures of an object (*e.g.* atom, electron, etc.)

2) m=9.1×10⁻³¹kg (electron) at T=300K λ_{dB} = 4×10⁻⁷cm = 4nm

3) m= 6.69×10^{-27} kg(⁴He) at T=300K λ_{dB} = 5×10^{-9} cm=0.05nm

at T= 2K λ_{dB} = 6×10⁻⁸cm = 0.6nm at T=0.2K λ_{dB} = 2×10⁻⁷cm = 2nm

4) m=1.42×10⁻²⁵kg (Rubidium atom) at 1nK λ_{dB} = 1×10⁻³cm = 10µm

Collection of identical particles

If the distance between the particles, l, is much larger than λ_{dB} then the particles retain their individual identity and their behavior is governed by classical thermodynamics

Bose-Einstein Condensation

- What if the temperature is reduced so that λ_{dB} grows to be on the order or even larger than *l*, the inter-particle spacing?
- Einstein, built on the idea of Bose, proposed in 1924 that these identical particles lose their individual identity and begin to behave as one single "giant atom".
- This is known as Bose-Einstein condensation (BEC).
- Now we know that this prediction is correct only for bosons (with integer spins)

Collection of identical particles

 λ_{dB}

As T approaches zero $\lambda_{dB} >> l$

"One for all and all for one"

Particles behave coherently like a single "giant atom"

Bose-Einstein Condensation in the vapor phase (Supergases)

BEC Apparatus

1) Introduce Rb vapor into a vacuum space 2) Cool the Rb atoms by colliding them with appropriate laser beam and other clever techniques so that their λ_{dB} is larger than the separation of the atoms. 3) First accomplished by Carl Wieman and Eric Cornell in 1995 on Rb atoms

Bose-Einstein Condensation in the vapor phase

Cornell

Nobel Prize in 2001

1) Introduce Rb vapor into a vacuum space 2) Cool the Rb atoms by colliding them with appropriate laser beam and other clever techniques so that their λ_{dB} is larger than the separation of the atoms. 3) First accomplished by Carl Wieman and Eric Cornell in 1995 on Rb atoms

BEC of Rubidium gases

Superfluidity in liquid ⁴He

Superfluid
helium film
can flow up
a wall

Superfluid Fountain

Fritz London is the first person to recognize that superfluidity in liquid ⁴He is a BEC phenomenon.

At 2K, λ_{dB} of ⁴He = 0.6nm , separation of ⁴He atoms l = 0.3nm

Superfluidity in liquid ⁴He

Superfluid
helium film
can flow up
a wall

Superfluid Fountain

Persistent current in superfluid

 Vanishing viscosity; "The viscosity of He II is at least 1500 times smaller than that of normal helium (He I)"

P. Kapitza, *Nature* **141**, 74 (1938) Allen & Misener *Nature* **141**,75 (1938)

Persistent current can be created by stirring the liquid helium while cooling through T_{λ} . Superfluid will continue to rotate after the stirring is stopped. Conversely, if one starts from the superfluid state, the superfluid will stay still even if one try to stir it.

Particles behave coherently like a single "giant atom"

"One for all and all for one"

In the Bose-condensed state particles or atoms do not "run" into each other. Because they act as a single coherent entity they cannot easily lose or gain energy from the surroundings. Hence superfluidity is possible.

 $\lambda_{dB} >> l$

Superconductivity

The phenomenon of superconductivity is analogous to superfluidity. In superconductivity, electric current can flow with no resistance. A similar persistent current of electron pairs can be set up.

MRI uses magnet powered by superconducting current in the persistent mode. In this mode the current and therefore the magnetic field is extremely stable.

 Superfluidity and superconductivity are macroscopic quantum phenomenon Principle for the observation of liquid helium behaving as a "Macroscopic Atom" : torsional pendulum

rigid support point

Period of Oscillation

When *I* decreases, Resonant period decreases

Torsional Pendulum

Period of Oscillation

Torsional Pendulum

rigid support point

Period of Oscillation

The ring on the top remains stationary and decouples from the oscillation, *I* decreases and period decreases.

Measurement of superfluidity

Above 2.176K, liquid helium behaves as a normal fluid. It will oscillate with the disk if *d* is smaller than the viscous penetration depth (δ).

 $(\delta \sim 3\mu m,$ if the oscillating frequency is 2π *1000 rad/s)

 η : viscosity

As temperature is cooled below T_{λ} Superfluid fraction stays still when the container is being oscillated we can measure the fraction of superfluid.

Helium is introduced into the cell

 $I_{total} = I_{torsion cell} + I_{normal helium}$

Expected background if there is no superfluid transition

A certain fraction of the liquid, known as superfluid fraction decouples from the oscillation of the torsional cell and does not contribute to the rotational inertia

Superfluid fraction $\rho = \rho_s + \rho_n$; two fluid model of Tisza and Landau

$$\rho_s = \psi^* \psi$$

Superfluid fraction = $\frac{\Delta \tau}{\text{total mass loading}}$

At T=0K 100% superfluid Does Bose-Einstein Condensation also occur in a solid?

- In principle it is possible, however "conventional wisdom" said it is unlikely to happen or immeasurably small.
- 2) Early theoretical model emphasize the phenomenon may occur as a consequence of the condensation of zero point vacancies.

(Chester, Andreev and Liftshitz, Reatto)

 If it is going to occur, the likely candidate is solid ⁴He, the most quantum mechanical solid.

Search for the supersolid phase in solid ⁴He. **Torsion cell Be-Cu Torsion Rod** with helium in annulus Filling line I D=0.4mm Channel OD=2.2mm OD=10mmMg disk Width=0.63mm Filling line Al shell Solid helium in annulus channel Detection Eunseong Kim Drive

Torsional Oscillator

Solid ⁴He at 51 bars

Amplitude of oscillation is 7Å

A decrease in the resonant period, similar to that found in superfluid liquid helium, appears below 0.25K

 τ_0 = 1,096,465ns at 0 bar 1,099,477ns at 51 bars (total mass loading=3012ns due to filling with helium)

The nonclassical rotational (NCRI) fraction is ~1.3%

Nature, **425**, 227 (2004); Solid helium in porous glass *Science* **305**, 1941 (2004); Bulk solid

Different Speed of Oscillation

4µm/s is equivalent to oscillation amplitude of 7Å

Supersolid fraction or nonclassical rotational (NCRI) fraction

Control experiment I : Solid ³He?

Control experiment II

With a barrier in the annulus, there should be NO simple superflow and the measured superfluid decoupling should be vastly reduced

Open Questions

- Supersolid response found in high quality crystalline sample (disorder appears to enhance the measured magnitude of NCRI) but is it possible in a 'perfect' crystal?
- The most puzzling result is the large (3 orders of magnitude) variation in NCRIF in different torsional oscillator measurements.
- Are there other experimental signature? dc superflow? persistent current? second sound? direct evidence of quantum vortices? Specific heat peak! Shear modulus change!
- Effect of ³He impurity?
- 2D supersolid?