

The Abdus Salam International Centre for Theoretical Physics

1959-18

Workshop on Supersolid 2008

18 - 22 August 2008

Probing DC flow and the upper limit of nonclassical rotational inertia in solid Helium-4

> A.S. Rittner Cornell University, USA

Probing the upper limit of nonclassical rotational inertia and flow in solid ⁴He

Ann Sophie C. Rittner and John D. Reppy

Cornell University Laboratory of Atomic and Solid State Physics

Outline

- Probing the upper limit of NCRI with a torsional oscillator
 - Experimental technique to determine inertia of solid
 - Biggest observed fraction and trend
 - Test of superflow in confined spaces
 - Hysteresis
- Attempt to observe mass flow
 - Setup
 - Mass flow at low pressures
- Conclusion

Motivation

 Principle: Measure inertia changes: (P resonance period, k spring constant, I inertia)

a)
$$P = 2\pi \sqrt{\frac{I}{k}}$$

• Nonclassical rotational inertia (NCRI or ρ_s/ρ): NCRI = $\frac{\text{Period drop below } T_c}{\text{Period increase upon filling}}$

Parameters

- Velocity
- Frequency
- Sample growth
- Pressure
- Sample geometry
- ³He concentration

Motivation

Principle: Measure inertia changes: (P resonance period, k spring constant, I inertia)

$$P=2\pi\sqrt{\frac{I}{k}}$$

• **Puzzle**: 0.4 % < ρ_s/ρ < 1.5 %

Penzev et al., cond-mat/0702632

Kondo et al., cond-mat/0607032 (2006) Rittner and Reppy, PRL 96, (2006)

Determination of solid inertia in constant volume growth

Problem: Pressure changes during solidification → period drop

Method 1: reversibly blocked oscillator

Method 2: Viscosity of ³He

- Liquid ³He: Determine gap from viscosity¹
- Reversible block in annular cell

Blocked annulus inertia

Liquid Helium-3 inertia

NCRI dependence on S/V

NCRI dependence on S/V

Clark et al., *PRL 99,* 135302 (2007) M. Kondo et al., cond-mat/0607032 (2006) Rittner & Reppy, PRL 98, 175302 (2007) Kim and Chan, Science, 305, 1941(2004) Aoki et al., PRL 99, 015301 (2007) Rittner & Reppy, arxiv:0807.2183

Test for superflow

- Superflow is irrotational
- Experimental test: Blocked annulus

Flow in oscillating frame

Kim & Chan's blocked annulus¹

- Theoretical prediction: 100-fold reduction of period drop² for 0.63 mm annulus
- Exp. Observation: 45-fold reduction
- Problem: gap_{open annulus} = 0.95 mm gap_{blocked annulus} = 1.1 mm
- Repeat in narrow annulus

1 Kim & Chan, Science (2004) 2 Mueller, private communication with KC

Blocking a narrow annulus

Velocity Hysteresis

Experimental Procedure

- Fix drive
- Cool to base temperature (18-20 mK)
- Change velocity in steps
- Wait for equilibrium given by Q (~20 min)

Annulus, gap = 148.3 μm

High vs. low velocity cooling

- Critical velocity exists in narrow annular cells (148 μm & 203 μm) \rightarrow less hysteresis
- No difference between high & low velocity cooling

Outline

- Probing the upper limit of NCRI with a torsional oscillator
 - Experimental technique to determine inertia of solid
 - Biggest observed fraction and trend
 - Test of superflow in confined spaces
 - Hysteresis
- Attempt to observe mass flow
 - Setup
 - Mass flow at low pressures
- Conclusion

Motivation for flow measurements

Previous DC flow experiments

- Eliminate elastic flexing \rightarrow short term response
- Extend pressure resolution by 100
- Disordered samples

Day & Beamish, PRL 96, 105304 (2006)

Pressure induced flow

Apply pressure to solid

Experimental setup

Pushing on solid \rightarrow probable mass flow

- Frequency = 2 mHz
- p_{Detect} = 25.7 bar
- ∆p ~ 50 mbar

Low temperature mass flow

T = 300 mK

T = 20 mK

 Ratio of response to drive displacement: ~1 x 10⁻⁴ → Superfluid Fraction ~ 0.2%

Higher temperature flow

Signal size temperature independent for 18 mK < T < 1 K

Sample characterization

Fit detection pressure, p = p₀+aT²+bT⁴: a = 0.00079 bar/T² → sample disordered

Overview T dependence

- Interpretation: Liquid channels
- Related to Ray and Hallock's low pressure mass flow?

Relaxation processes in helium

T = 100 mK

T = 19 mK

• 100 mK → τ = 8.02 hrs

19 mK $\rightarrow \tau$ = 34.6 hrs

Plastic flow

Overview Relaxations

Arrhenius plot, barrier height: T_B = 28 mK

Summary & open questions

- Supersolid fraction levels off at ~ 20% in narrow annuli.
- Blocked annulus experiment consistent with superflow for 17.1 % NCRI.
- Pushing on solid probably results in mass flow at low pressures.
- Superflow?
- Relation to Ray & Hallock's DC flow experiment? Relation to superfluid liquid channels?
- Higher pressure?