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Klein tunneling

Klein paradox: transmission of relativistic
particles is unimpeded even by highest
barriers
Reason: negative energy states;
Physical picture: particle/hole pairs

Katsnelson, Novoselov, _ ,
Example: potential step

1 0 otherwise.

Transmission,
angular dependence x> D,

, 0 < JC < D,
x > D,

Chiral dynamics of
massless Dirac particles
no backward scattering
(perfect transmission at
zero angle)

Limit of extremely
high barrier: finite T



Electron confinement in
junction

Gate-induced potential well, e.g. V(x) = axA2 + E

Momentum conserved along y-axis:

Effective D=1 potential „ .

a p-n-p

\ + pj + V(x).

n Savchenko & Guinea

Confinement
2t by gates difficult!

Klein tunneling
No discrete spectrum, instead:
(i) quasistationary states (resonances);
(ii) collimated transmission



Quasiclassical treatment

Potential V(x) = U(x/xo)A2 + E

Silvestrov, Efetov
Classical trajectories
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Px°
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\

= G = ±C^pl + pj + V(x).

Bohr-Sommerfeld quantization

Finite lifetime

-1

Tunneling Turning
points:

c\py\ - £ A . r | _

U u

Degree of confinement can be tuned
, , r>i i-r

by gates; BUT:
no confinement for py-0



Geometric confinement in
ribbons and dots

Nanoribbons: quantized ky = 71/width

Geometric energy gap A = hvF/width

Coulomb blockade in
graphene ^ ^ ^ ^ 1 Geim, Novoselov; Ensslin group



Graphene p-n junctions:
collimated transmission

• Ballistic transmission at normal incidence
(contrast tunneling in conventional p-n
junctions);

• Ohmic conduction (cf. direct/reverse bias
asymmetry in conventional p-n junctions)

• No minority/majority carriers



Signatures of collimated
transmission in pnp s

Exeter group:
narrow gate (air bridge)

simulated electrostatic
potential, density profile

170 nm

top gate — |

graphene

SiCLcompare expected and
measured resistance, ^ H
find an excess part back*

Stanford group:
sharp confining potential
(the top gate -10 times closer)

analyze the antisymmetric
bipolar/unipolar part of resistance

AR agrees w. Klein picture, BUT:
a small effect, model-sensitive
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Besides collimated
transmission, are there any-
other observable signatures

of the Klein physics?
Negative refraction and electron Iense (Cheianov, Falko, Altshuler);
Magnetoresistance (Cheianov & Falko)

Shytov, Rudner & LL, arXiv:0808.0488

60
Fabry-Perot
resonances
mixed with UCF?

Exeter
group

1.5

Stanford i05

group



Klein backscattering and
Fabry-Perot resonances

Momentum-conserving tunneling, no disorder

T(e,py) =
t, t-2

ri(2) = I" " *i(2) reflection coefficients.

A0 = 2#WKB

B>0

= I ?2
V ixr

ft J l ^ ^ V

the backrettection phases

Phase of backreflection:
(i) phase jump by n at normal
incidence shows up in FP interference;
(ii) the net FP phase depends on the sign of
inner incidence angles;
(iii) CAN BE ALTERED by B field

(c)

B=0

V f l , t

p <0

B>0

py(x) = - eBx,

-eBL/2 <pySy <eBL

py{x\) > 0 and



Transmission at B=0 and B>0
Top-gate potential;
Dirac hamiltonian

U(x) = ax2 — e,

-n interfaces at x = ±^s-, x£

H = vpa^px + vFP"n(Py '' &Bx) + U(x)

Reversal of fringe
contrast on the lines Py = ±eBv€/a

Interpretation of scattering
problem: fictitious time t=x;
repeated Landau-Zener
transitions; Stuckelberg
oscillations



Quasiclassical analysis

Confining potential and
Dirac hamiltonian

WKB wavefunction

Transmission
and reflection
amplitudes

Sign change
(phase jump)

U(x) = ax — £,

p-n interfaces at x = ±zG, x£ y/e/a



FP contrast in conductance
Landauer formula:

FP phase
contrast not
washed out after |
integration over
Py

Signature of n:
Half-a-period phase shift
induced by magnetic field

MR same as in Cheianov, Falko

i 4.5

3.5

TTTTTT
Energy s/s.



Interpretation of the %-shift
as a Berry's phase

Trajectory in momentum space yields
an effective time-dependent "Zeeman" field

H = v o.p(t)

Weak B:
zero not enclosed, A0 = 0

Strong B:
zero enclosed, A8 = %

px

Berry's phase must be added to the WKB phase



FP oscillations (experiment)

Columbia group (2008):
FP resonances in zero B; crossover to
Shubnikov-deHaas oscillations at B>1T

.10 .8 -6 -4 -2 0 0 2 4 6 8 10 VTG (V)



Scattering on disorder
Shubnikov - de Haas

in a p-n-p
structure



Oscillations: LDOS, impurity
, conductance

Momentum-resolved DOS at x=0. B=0

B=0
B>0

Momentum-resolved DOS at x=0,

Density of states
(momentunn-resolved)
within the p-n-p structure

2 3
Energy E/E,



Total density of states
Total DOS at x=0

Energy E/E.

AGREES WITH
EXPERIMENT?

Energy-derivative

The oscillatory part of DOS at x=0 (energy derivative dN/de)
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Adding momentum-conserving
contribution to SdH conductance

The oscilletory part of DOS at x=0 (energy derivative dN/de)

1.5

(9

Conductance, momentum conserving

Energy-derivativeMomentum-conserving conductance energy-derivative dG/ds



Part II

Lorentz boost and
magnetoresistance of p-n

junctions



Electron in a single p-n
junction

Potential step instead of a barrier (smooth or sharp)
Cheianov, Falko

p-n junction schematic:o P
, p±=pi±ip2..

+1 (-1) for points K(K')

smooth step: sharp step:

(nontrivial) (straightforward)

g a t e s

In both cases, perfect transmission in the forward
direction: manifestation of chiral dynamics



Exact solution in a uniform
electric field ("Landau-Zener")
Use momentum representation (direct access to asymptotic
plane wave scattering states)

Evolution in a fictitious time with a hermitian 2x2 Hamiltonian

Equivalent to Landau-Zener transition at an avoided level
crossing;
Interpretation: interband tunneling for p2(t)=vt

Transmission equals to the LZ probability of staying in the
diabaticstate:

Exact transmission matches the WKB result



Single p-n junction in B field
Recall relativistic motion in crossed E, B fields Andrei Shytov, Nan Gu &

LL

Two regimes:

(i) electric case E>B ("parabolic" trajectories)
(ii) magnetic case B>E (cyclotron motion + drift)

Analogous regimes in graphene p-n junction:

Dirac equation (4) in a Lor entz-invariant form

where 7^ are Dirac gamma-matrices, : =
7 1 = -*<72i 7 2 — -*<7ii a n c l V? is a two-component
wave function.

Electric regime (scattering T-matrix, G>0)

Magnetic regime (Quantum Hall Effect,
G=0)

Lorentz mvariantsE2 — B 2 . E.B

c/VF=300

lc/vF)E,

> {c/vF)E



Lorentz transformation
Electric regime B<B*, critical field = a¥ = {c/vF)E.

Eliminate B using Lorentz boost:

Aronov, Pikus 1967

Transmission coefficient is Lorentz invariant:

I = = G * d = = ( Flr'V F

Net conductance (Landauer formula)

T{p1)dp1

Suppression of G in the electric regime precedes the formation
of Landau levels and edge states at p-n interface

At larger 6: no bulk transport, only edge transport

A = | 7/3 7 0
0 0 1

experiment in Stanford:

0 1 2 3 4 5 6
B(T)

a) -4.0.|0 l2cnT2-
-3.0-]0 l2«B-2-
-2.0-I012cnr2-
-i.o.

..;:::>
'*""!:::::::;

0 I 2 3 4 5 6
B (T)



Collimated transmission for
subcritical B

Electric regime B<B*

Perfect transmission at a finite
angle

9 B = arcsinfi/fi

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0

Collimation angle reduced by Lorentz contraction

Current switch controled by
B

T=1



Mapping to the Landau-Zener
transition problem

Quasiclassical WKB analysis Evolution with a non-hermitian
Hamiltonian

idxp(x) = ((E 4- 4- i(pi 4- )#4 Eigenvalues:
K(X) = - - (pi 4-

Exact solution: use momentum representation (gives direct
access to asymptotic plane wave scattering states)

-ieEdipfdp2 =

Equivalent to the Landau-Zener transition
Interpretation: interband tunneling for
p2(t)=vt
L-Z result agrees with WKB



Classical trajectories
a comment by Haldane, 2007

Electron ("comet") orbits the Dirac point ("Sun")

H(p, r) = e(p) - eEx, p = p - eA, A = (0, Bx)

Energy integral : e(p) — v^.p = eo, B/B 2

Poisson brackets :

Graphene : e(p) = ^
— VJJ cos 8

Two cases, open and closed orbits:

Vo > vp : hyperbola; VJJ < vp : ellipse



Graphene bilayer: electronic structure and QHE

H=

McCann & Falko 2006



-n junction in graphene bilayer

Bilayer Dirac Hamiltonian with vertical field and interlayer coupling

Dirac eqn with fictitios pseudospin-dependent gauge field:

After Lorentz boost (B eliminated):



Transmission characteristics
4x4 transfer matrix in
momentum space
(effectively 2x2)

,

Gapped spectrum at
finite vertical field

Zero transmission near
u=0 — tunable!

Perfect transmission
for certain u and p

Tunneling at small p -°-5 _
suppressed by B field -0.5 0 0.5

Momentum p (A/vp)
0.5 0 0.5

Momentum p1 (A/vp)



Transport in pn junctions,
Manifestations of

relativistic Dirac physics:

• Klein backreflection contributes a n phase
to interference ;

• Bilayers: a 2n phase;
• Half a period phase shift a hallmark of Klein

scattering
• electric and magnetic regimes B<300E and

B>300E (300=C/VF)
• Consistent with FP oscillations and

magneto resistance of existing p-n junctions







Also: a momentum-conserving
contribution to conductance

3

O
'•4->

C

Conductance, nnonnentunn conserving

12


