Polymers, polygons and pattern theorems

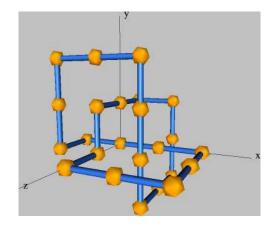
September 2008

Joint work with:

Chris Soteros, Mahshid Atapour, Carla Tesi, Enzo Orlandini, Buks van Rensburg and De Witt Sumners

Modelling ring polymers on a lattice

Lattice polygons



Counting polygons on Z^3

We can count polygons with n edges up to translation.

 $p_4 = 3$ $p_6 = 22$ $p_8 = 207$

Large n behaviour

Classic result due to John Hammersley:

$$\log 3 \le \lim_{n \to \infty} n^{-1} \log p_n = \kappa \le \log 5$$

Counting unknotted polygons on Z^3

If we write p_n^o for the number of *unknotted* polygons with n edges then

 $p_4^o = 3$

$$p_6^o = 22$$

and in fact $p_n^o = p_n$ if n < 24 (Diao).

Unknotted polygons and pattern theorems

$$\lim_{n \to \infty} n^{-1} \log p_n^o = \kappa_o$$

and

 $\kappa_0 < \kappa$

which establishes the FWD conjecture for this model.

Unknotted polygons and pattern theorems

$$\lim_{n \to \infty} n^{-1} \log p_n^o = \kappa_o$$

and

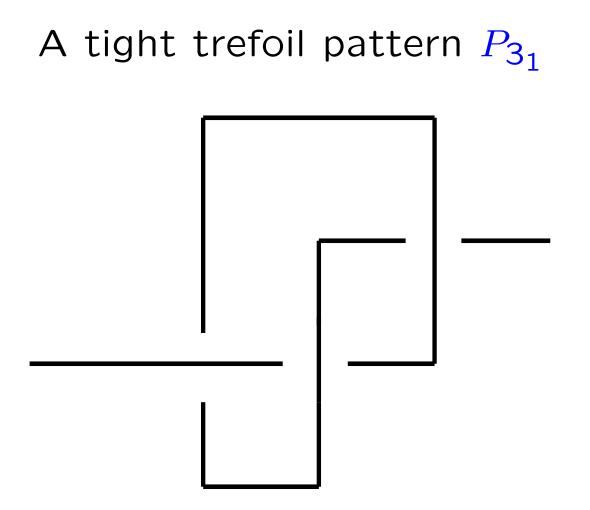
 $\kappa_0 < \kappa$

Idea of proof:

1. no antiknots

2. knotted ball pairs

3. Kesten's pattern theorem



Open question: Find good bounds on $\kappa - \kappa_o$

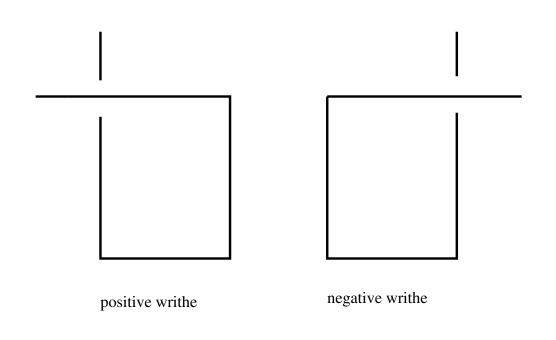
Writhe

Construct two mirror image patterns that contribute $\pm \omega$ independently with equal probability. The total writhe is given by

$$Wr = Wr_{external} + \sum_{k} Wr_{k}$$

where $Wr_k = \pm \omega$ comes from the *k*th pattern. If the writhe is zero the external writhe must be cancelled by the sum of the pattern writhes. This has probability at most $1/\sqrt{\epsilon n}$ for some $\epsilon > 0$.

Patterns contributing writhe



Writhe

A pattern theorem plus coin tossing establishes that there exists an A>0 such that

 $\langle |Wr| \rangle_n \ge An^{1/2}$

for sufficiently large n.

Open question: Is this also true for unknotted polygons?

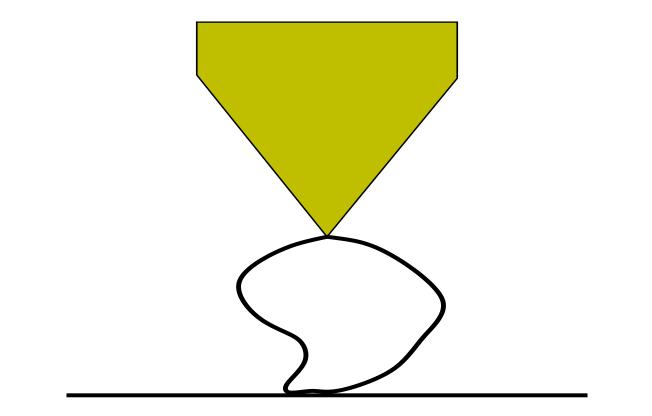
Polygons with a tensile force in the z-direction

Suppose that $p_n(s)$ is the number of *n*-edge polygons with span s in the *z*-direction. The polygons are not equally weighted but have partition function

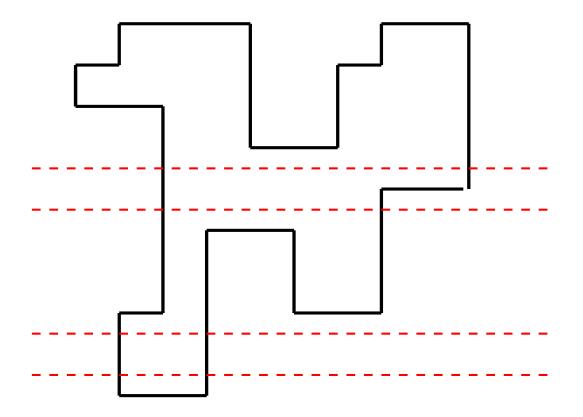
$$Z_n(y) = \sum_s p_n(s) y^s$$

where $y = \exp[\overline{f}/kT] = \exp(f)$. If f > 0 then y > 1 and polygons with larger spans have larger weights.

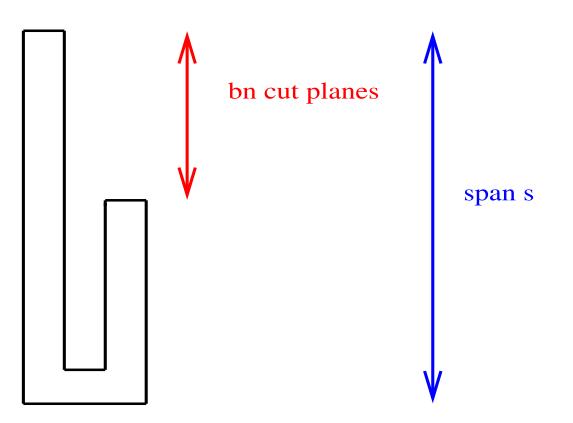
What's the experiment?



Cut planes and a pattern theorem

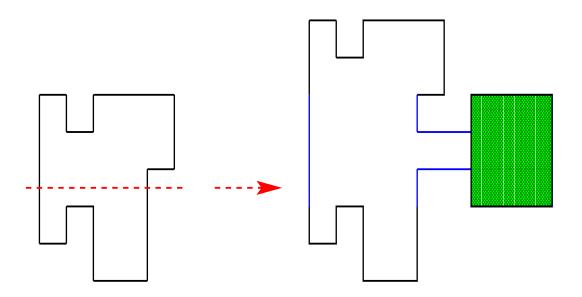


Span of a stretched polygon



For sufficiently large forces polygons have a positive density of cut planes.

Inserting a pattern



If the polygon has at least bn cut planes then we can insert an patterns (a < b) in at least $\binom{bn}{an}$ ways.

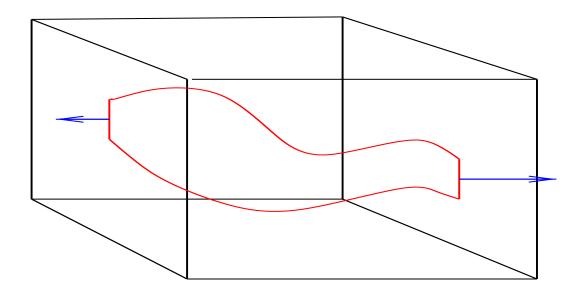
This is enough to prove that polygons not containing the pattern are exponentially rare and that all except exponentially few polygons contain the pattern a positive density of times.

Then choose the pattern to be knotted to show that almost all polygons subject to a sufficiently large tensile force are knotted.

Can we say anything about small forces?

We can do something for the special case of a polygon confined to a prism.

The prism is infinite in the direction in which the force is applied (say the z-direction) but finite in the other two coordinate directions.



Now we can prove a pattern theorem for any extensional force and so show that polygons in a prism are knotted for any such force.