Polymers, polygons and pattern theorems

September 2008

Joint work with:

Chris Soteros, Mahshid Atapour, Carla Tesi, Enzo Orlandini, Buks van Rensburg and De Witt Sumners

Modelling ring polymers on a lattice

Lattice polygons

Counting polygons on Z^{3}

We can count polygons with n edges up to translation.

$$
p_{4}=3 \quad p_{6}=22 \quad p_{8}=207
$$

Large n behaviour

Classic result due to John Hammersley:

$$
\log 3 \leq \lim _{n \rightarrow \infty} n^{-1} \log p_{n}=\kappa \leq \log 5
$$

Counting unknotted polygons on Z^{3}

If we write p_{n}^{o} for the number of unknotted polygons with n edges then

$$
\begin{gathered}
p_{4}^{o}=3 \\
p_{6}^{o}=22
\end{gathered}
$$

and in fact $p_{n}^{o}=p_{n}$ if $n<24$ (Diao).

Unknotted polygons and pattern theorems

$$
\lim _{n \rightarrow \infty} n^{-1} \log p_{n}^{o}=\kappa_{o}
$$

and

$$
\kappa_{O}<\kappa
$$

which establishes the FWD conjecture for this model.

Unknotted polygons and pattern theorems

$$
\lim _{n \rightarrow \infty} n^{-1} \log p_{n}^{o}=\kappa_{o}
$$

and

$$
\kappa_{O}<\kappa
$$

Idea of proof:

1. no antiknots
2. knotted ball pairs
3. Kesten's pattern theorem

A tight trefoil pattern $P_{3_{1}}$

Open question: Find good bounds on $\kappa-\kappa_{o}$

Writhe

Construct two mirror image patterns that contribute $\pm \omega$ independently with equal probability. The total writhe is given by

$$
W r=W r_{\text {external }}+\sum_{k} W r_{k}
$$

where $W r_{k}= \pm \omega$ comes from the k th pattern. If the writhe is zero the external writhe must be cancelled by the sum of the pattern writhes. This has probability at most $1 / \sqrt{\epsilon n}$ for some $\epsilon>0$.

Patterns contributing writhe

positive writhe

negative writhe

Writhe

A pattern theorem plus coin tossing establishes that there exists an $A>0$ such that

$$
\langle | W r\left\rangle_{n} \geq A n^{1 / 2}\right.
$$

for sufficiently large n.

Open question: Is this also true for unknotted polygons?

Polygons with a tensile force in the z-direction

Suppose that $p_{n}(s)$ is the number of n-edge polygons with span s in the z-direction. The polygons are not equally weighted but have partition function

$$
Z_{n}(y)=\sum_{s} p_{n}(s) y^{s}
$$

where $y=\exp [\bar{f} / k T]=\exp (f)$. If $f>0$ then $y>1$ and polygons with larger spans have larger weights.

What's the experiment?

Cut planes and a pattern theorem

Span of a stretched polygon

For sufficiently large forces polygons have a positive density of cut planes.

Inserting a pattern

If the polygon has at least $b n$ cut planes then we can insert $a n$ patterns $(a<b)$ in at least $\binom{b n}{a n}$ ways.

This is enough to prove that polygons not containing the pattern are exponentially rare and that all except exponentially few polygons contain the pattern a positive density of times.

Then choose the pattern to be knotted to show that almost all polygons subject to a sufficiently large tensile force are knotted.

Can we say anything about small forces?

We can do something for the special case of a polygon confined to a prism.

The prism is infinite in the direction in which the force is applied (say the z-direction) but finite in the other two coordinate directions.

Now we can prove a pattern theorem for any extensional force and so show that polygons in a prism are knotted for any such force.

