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Talk Outline

• Review of Lattice Models of Polymers

• Orlandini, Tesi and Whittington proposal for a “good” measure of

entanglement complexity for dense polymer systems

• Results on what can be proved for this measure of the entanglement

complexity for a system of self-avoiding walks in a tube (work with M.

Atapour).



Introduction to Polymers

Polymer: Large molecule made of repeated molecular units called monomers; if there is more

than one type of monomer Copolymer

homopolymer - polyethylene copolymer - RNA

Fundamental Question of Interest: What properties of polymer solutions are primarily a

result of the fact that a polymer is a very large molecule made up of repeated molecular units?



Modelling Polymers in Solution

ADVANTAGES of LATTICE MODELS:

excluded volume property is easily incorporated

substantial conformational freedom available

combinatorial analysis possible

qualitative features of phase diagrams expected to be correct

values of critical exponents expected to be exact

MODELS of LINEAR and RING POLYMERS:

SELF−AVOIDING  POLYGONLINE  GRAPH SELF−AVOIDING  WALK CIRCLE  GRAPH



Properties of Self-avoiding Polygons (SAPs) in Z
d

Standard Concatenation Argument

pnpm ≤ (d − 1)pn+m ; pn ≤ (2d)n ⇒ lim
n→∞

1

2n
log p2n ≡ log µd = κd

(Hammersley Proc.Camb.Phil.Soc. 58 (1961), 235–8)

pn(φ)pm(φ) ≤ 2pn+m(φ) ; pn(φ) ≤ pn ⇒ lim
n→∞

1

2n
log p2n(φ) ≡ log µ0 = κ0

(Sumners and Whittington JPA 21 (1988), 1689–94)

κo < κ3 ⇒ Prob. of Knotting= 1 −
pn(φ)

pn
= 1 − e

−(κ−κo)n+o(n)

Key ingredient: Pattern theorem (Kesten, 1963) used to prove that “tight trefoil” pattern occurs at

least once in all but exponentially few sufficiently long SAPs.



Good Measures of Knot Complexity

Results extended in several directions ... Soteros, Sumners and Whittington (1992

MathProcCambPhilSoc 111 75)

Good Measures of Knot Complexity: Function F : K → [0,∞) s.t.

(i) F (φ) = 0

(ii) ∃K ∈ K s.t. F (nK#L) ≥ nF (K) > 0 ∀L ∈ K (i.e. roughly additive w.r.t. knot product)

Then Sumners & Whittington (1988) ⇒

If F is a good measure of knot complexity, let K be a knot which satisfies part (ii) above. Then, there

exists nK , Ak > 0 s.t. ∀n > nK all but exponentially few n-SAPs have F -complexity exceeding AKn.

Examples of Good Measures: Crossing number, number of prime factors, genus, bridge number minus

one, span of any non-trivial Laurent knot polynomial, log(order), unknotting number, minor index, braid

index minus one.



For Dense Polymer Solutions or Polymer Melts, What is a

“Good” Measure of Entanglement Complexity?

Electron micrograph of a 0.4 mg/ml actin solution polymerized in vitro. Bar = 1 µm. (Gotter et al

arXiv:cond-mat/9611097 v1 20 Nov 1995.)

Orlandini, Tesi and Whittington 2000 - characterize entanglement by “linking number” for a tube or cube

from solution.



Orlandini et al (2000) Measure for Entanglement Complexity in

Dense Systems

Proposal: Take a random cube (or tube) from n-edge system composed of c chains. Assume endpts are in

the cube boundary and no edges in the boundary. For each pair (i, j) of chains, join up the two ends of

each chain by an arc outside the cube and compute linking number Lk(i, j) = 1
2

P

m σm.

Entanglement Measure: EC =

k−1
X

i=1

X

j>i

|Lk(i, j)|

Regular Projections of Two Chains Density dependence of 〈EC〉 for cube size 10

(Orlandini et al JPA 33 (2000) L181-L186.) (Orlandini and Whittington JCP 121 (2004) 12094–9.)



What Can Be Proved About This Entanglement Measure?

SSAWs in ∞ × N × M Tube

x

z

y

Define: A System of Self-avoiding Walks (SSAW) of size n, span s and with c components in an

(N,M)-tube is a finite subgraph of the tube with n-edges and c connected components s.t.

(i) each connected component is an undirected SAW (USAW) with its endpts in a tube wall (e.g. y = 0,

y = N , z = 0 or z = M) and no degree two vertices in any wall of the tube

(ii) for each integer m ∈ [0, s], there is at least one vertex of the SSAW in the plane x = m and no

vertices in x = m, ∀m /∈ [0, s].

qs(N, M ; n, c) - # of n-edge, span s, c-component SSAWs in (N, M)-tube (up to x-translation)

Note: c = 1
2× (# of degree one vertices in SSAW)



Concatenation of SSAWs:

x
y

z G1 G2

Two SSAWs G1 (s1 = 4, n1 =

19, c1 = 6) and G2 (s2 = 2, n2 =

12, c2 = 3) in T (2, 4).

x
y

z
G

SSAW G (s = 7, n = 31, c = 9),

the concatenation of G1 and G2.

Concatenation gives

qs1(N, M ; n1, c1)qs2(N, M ; n2, c2) ≤ qs1+s2+1(N, M ; n1 + n2, c1 + c2)

⇒ (via standard arguments, c.f. Janse van Rensburg 2000)

the existence of the limiting free energy:

F (N, M ; x, y) = lim
s→∞

1

s
log Zs(N, M ; x, y)

where

Zs(N, M ; x, y) =
X

n,c

qs(N, M ; n, c)x
n

y
c
.



F (N, M ; x, y) = lim
s→∞

1

s
log Zs(N, M ; x, y); Zs(N, M ; x, y) =

X

n,c

qs(N, M ; n, c)xn
y

c
.

Plus F (N, M ; x, y) is

(i) a convex function of log x (for fixed y) and of log y (for fixed x);

(ii) its right and left derivatives in x (for fixed y) and in y (for fixed x) exist everywhere in (0, ∞);

(iii) it is differentiable almost everywhere, and when the derivative exists the order of the limit and

derivative can be interchanged.

⇒

For r.v. X with state space span s SSAWs and P(X = G) =
xn(G)yc(G)

Zs(N, M ; x, y)

lim
s→∞

E[n(X)]

s
exists a.e. and is non-decreasing in x, i.e.

For fixed (x, y), the avg. edge-density
E[n(X)]

sNM
goes to ρe(x, y) as s → ∞, and ↑ as x ↑ .

lim
s→∞

E[c(X)]

s
exists a.e. and is non-decreasing in y, i.e.

For fixed (x, y), the avg. walk-density goes to ρw(x, y) as s → ∞, and ↑ as y ↑ .



Entanglement Complexity of SSAWs in ∞× N × M Tube
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A two-component link K12 is associated to a pair of USAWs (w̄1, w̄2).

The following result has been proved (c.f. Atapour, PhD thesis):

Corollary 1 Given an n-edge SSAW G, let w1, ...wc be the sequence of USAWs in G. Let Ḡ be the

SSAW associated to G as prescribed in Lemma 6.2.1. For any 1 ≤ i < j ≤ k, there exists a

two-component polygonal link Kij = (Ki,Kj) corresponding to the pair of USAWs (wi, wj) such that

when it is projected into the xy-plane those edges of Kij which lie outside BG will create no crossing with

the edges inside BG and at most one crossing, involving both polygons Ki and Kj , amongst themselves.

The Entanglement Complexity, EC(G), of any SSAW G is now defined as follows:

EC(G) =

c−1
X

i=1

c
X

j=i+1

|Lk(Kij)|, (1)

where Lk(Kij) is the linking number of Kij .



Upper Bound on EC of SSAWs: Since one can bound the number of crossings associated with an

edge of the SSAW by a constant (dependent only on N and M), the EC-complexity can be bounded

above by a linear function of n or s:

(i) Given a pair of SAWs, we can extend their endpts (by adding at most a(N,M) edges) so that the new

endpoints are “away” from the tube.
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(ii) For any ǫ > 0, there exists a “push-off” of the walk

pair which has a regular projection in the (x, y)-plane

such that the (x, y) coordinates of walk vertices

are within ǫ of their values in the regular projection.

The endpoints will be on the boundary of the projection.

⇒ EC =

c−1
X

i=1

X

j>i

|Lk(i, j)| ≤
c

X

i=1

ni
X

m=1

C(i,m)+
c

X

i=1

ex(i)

ni := number of edges in the ith SAW

C(i,m) := the number of edges

crossed by the mth edge of the ith SAW ≤ the number

of edges E in a 3 × (N + 2) ×M slice of the lattice

ex(i) := the number of walk pairs involving the ith walk which could result in an extra crossing ≤ the

number of walks (other than the ith) which have vertices in a slice of the tube determined by the location

of the endpts of the ith walk ≤ number of vertices in that tube slice ≤ (N + 2)(M + 1)ni

⇒ EC =

c−1
X

i=1

X

j>i

|Lk(i, j)| ≤ d(N,M)n ≤ dd(N,M)s



A Lower Bound for EC of SSAWs in Tubes

qs(N,M ;n, c;< m,P ) - # of n-edge, span s, c-component SSAWs in (N,M)-tube (up to

x-translation) which contain less than m translates of pattern P

A Pattern Theorem would allow us to compare:

M

N

F (N,M ;x, y; ǫ, P ) = lim
s→∞

1

s
logZs(N,M ; x, y; ǫ, P );

Zs(N,M ;x, y; ǫ, P ) =
X

n,c

qs(N,M ;n, c;< ǫs, P )xnyc.

to

F (N,M ;x, y) = lim
s→∞

1

s
logZs(N,M ; x, y);

Zs(N,M ;x, y) =
X

n,c

qs(N,M ;n, c)xnyc.

If F (N,M ; x, y; ǫ, P ) < F (N,M ; x, y) then

⇒ All but exponentially few sufficiently wide span

s “weighted” SSAWs contain at least ǫs translates of P .

Since P cannot occur

more than ǫs times in an SSAW with EC ≤ ǫs ⇒

(i) All but exponentially

few sufficiently wide SSAWs have entanglement measure

EC > ǫs, i.e. EC grows at least linearly in the span.

(ii) The probability that a span

s SSAW has EC greater than ǫs goes to 1 as s → ∞

HENCE A PATTERN THEOREM IS NEEDED - TRANSFER MATRIX WILL BE USED



Transfer Matrix for SSAWs: Given k ≥ 2, an SSAW is a sequence of overlapping k-configs.

x
y

z

c

C1
C2

C3

C4
C5

C6

C7

1,1

2,2 1,1
2,2

1,1

2,2 1,1
2,2

Pi
Pj Pk

Pl

Pm Pn

Sk: set of all possible SSAW k-configs

Sk,o: subset of Sk that are start k-configs

Sk,f : subset of Sk that are end k-configs

Gk = (V,A):

graph with vertex set V = Sk = {P1, P2, ...}

and arc (Pi, Pj) ∈ A iff PiPj is in Sk+1.

Any walk on Gk starting

in Sk,o and ending in Sk,f corresponds to an SSAW.



Transfer Matrix for SSAWS: Given k ≥ 2 and Gk

1,1

2,2 1,1
2,2

1,1

2,2 1,1
2,2

Pi
Pj Po

Pl

Pm Pn

Gk = (V,A):

graph with vertex set V = Sk = {P1, P2, ...}

and arc (Pi, Pj) ∈ A iff PiPj is in Sk+1.

Any walk on Gk starting

in Sk,o and ending in Sk,f corresponds to an SSAW.

Simplest Transfer Matrix: T = (Ti,j)

Ti,j =

(

1 , (Pi, Pj) ∈ A

0 , otherwise
.

⇒

(T
r
)i,j = # of (k + r)-configs starting with Pi & ending with Pj .

If Pi ∈ Sk,o and Pj ∈ Sk,f , then they are SSAWs.



More General Transfer Matrix for SSAWS:

Recall: X a r.v. with state space all span s SSAWs.

P(X = G) =
xn(G)yc(G)

Zs(N,M ; x, y)

n(G)- # of edges of G ; c(G)- # of walks in G (i.e. # of connected components)

Grand Canonial Partition function:

Q(x, y, z) =
X

s,n,c

qs(N,M ;n, c)xnyczs =
X

s

Zs(N,M ; x, y)zs.

1,1

2,2 1,1
2,2

1,1

2,2 1,1
2,2

Pi
Pj Po

Pl

Pm Pn

− logRQ(x, y) =

F (N,M ;x, y) = lims→∞ s−1 logZs(N,M ;x, y)

Given k ≥ 2 and Gk

General Transfer Matrix: T = (Ti,j)

Ti,j =

(

zs(Pi,Pj )xn(Pi,Pj )yc(Pi,Pj ) , (Pi, Pj) ∈ A

0 , otherwise
.

⇒

Q(x, y, z) =

∞
X

r=0

X

{i:Pi∈Sk,o}

X

{j:Pj∈Sk,f }

(T
r
)i,j =

f(x, y, z)

det(I − T )
.

where f(x, y, z) is analytic.



Consequences of the Transfer Matrix Representation

qs(N,M ;n, c; P̄ ) - # of n-edge, span s, c-component SSAWs in (N,M)-tube (up to x-translation)

which DO NOT contain pattern P

Zs(N,M ; x, y; P̄ ) =
X

n,c

qs(N,M ;n, c; P̄ )x
n
y
c
.

The transfer matrix and Perron-Frobenius Theory ⇒

M

N

F (N,M ;x, y; P̄ ) = lim
s→∞

1

s
logZs(N,M ; x, y; P̄ )

is strictly less than

F (N,M ;x, y) = lim
s→∞

1

s
logZs(N,M ; x, y)



Moreover, for any non-negative integer valued additive functional ψ defined for SSAWs, there exists

γψ,x,y > 0 (can be determined from the eigenvalues and eigenvectors of T ) such that as s → ∞

E[ψ(X)] = (γψ,x,y)s+O(1)

HENCE:

For the edge count: E[n(X)] = (γe,x,y)s +O(1)

For the walk count: E[c(X)] = (γw,x,y)s+O(1)

For nP (X)- # of translates of P occurring in X: E[nP (X)] = (γP,x,y)s+O(1)

For n×(X)- # of crossings in a regular projection of X: E[n×(X)] = (γ×,x,y)s+O(1)

For the Entanglement Complexity Measure EC:

(γP,x,y)s+O(1) ≤ E[EC(X)] ≤ (γ×,x,y)s+ d′(N,M)s+O(1)

⇒

EC IS A GOOD MEASURE OF ENTANGLEMENT COMPLEXITY



Future Work

For the Entanglement Complexity Measure EC:

(γP,x,y)s+O(1) ≤ E[EC(X)] ≤ (γ×,x,y)s+ d
′
(N,M)s+O(1)

How do the γ’s change with (x, y)? i.e. How does avg. EC(X) change as the

edge-density and the walk-density change?

For fixed limiting edge-density:

f(N, M ;α) ≡ lim
s→∞

s
−1 log qs(N,M ; ⌊αs⌋),

where qs(N, M ; ⌊αs⌋) is the # of span s, ⌊αs⌋-edge SSAWs (up-to x-translation).

What do these results mean for EC?

What happens as N and M change?

What about other measures of Entanglement Complexity?



Stretching a Polygon in an (N, M )-Tube

x
0f

y

z

A SAP under the influence of a

fixed force f > 0; note that the

tube is rotated 90 degrees counter-

clockwise.

pn(N, M ; s): # of n-edge, span s SAPs in (N, M)-tube

Ẑn(N, M ; x) =
X

s

pn(N, M ; s)e
fs

,

where x = ef

Standard concatenation argument for SAPs in a tube ⇒

F̂ (N, M ; x) = lim
n→∞

n
−1

log Ẑn(N, M ; x)

exists.

For r.v. X with state space n-edge SAPs,

P(X = ω) =
xs

Ẑn(N, M ; x)
=

efs

Ẑn(N, M ; ef )

Transfer matrix arguments ⇒

E[s(X)] = 1
ρe(f)n + O(1)

and is non-decreasing in f .



Knot Complexity of Stretched Polygons in a Tube

x
0f
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z

Part of a tight

trefoil pattern for

the tube.

pn(N, M ; s; P̄ ): # of n-edge, span s SAPs in (N, M)-tube which do NOT contain pattern P

Ẑn(N, M ; x; P̄ ) =
X

s

pn(N, M ; s; P̄ )efs ,

where x = ef

A concatenation argument for SAPs in a tube ⇒

F̂ (N, M ; x; P̄ ) = lim
n→∞

n
−1 log Ẑn(N, M ; x; P̄ )

exists.

Transfer-matrix arguments ⇒

F̂ (N, M ; x; P̄ ) < F̂ (N, M ; x)

E[nP (X)] = (γP,f )n + O(1)

For any f , all sufficiently long

n-edge SAPs under the influence of the force f contain

at least γP,f n trefoils in their knot decomposition.


