Entanglement Complexity of Systems of Self-Avoiding Walks in Lattice Tubes

Conference on Knots and other Entanglements in Biopolymers: Topological and Geometrical Aspects of DNA, RNA and Protein Structures

The Abdus Salam International Centre for Theoretical Physis
Trieste, Italy, September 15-19, 2008

Chris Soteros

Department of Mathematics and Statistics
University of Saskatchewan

Collaborator:
Mahshid Atapour, PhD Sept. 4, 2008, University of Saskatchewan
Acknowledgments:
This work is supported by NSERC of Canada

Talk Outline

- Review of Lattice Models of Polymers
- Orlandini, Tesi and Whittington proposal for a "good" measure of entanglement complexity for dense polymer systems
- Results on what can be proved for this measure of the entanglement complexity for a system of self-avoiding walks in a tube (work with M. Atapour).

Introduction to Polymers

Polymer: Large molecule made of repeated molecular units called monomers; if there is more than one type of monomer Copolymer

Fundamental Question of Interest: What properties of polymer solutions are primarily a result of the fact that a polymer is a very large molecule made up of repeated molecular units?

Modelling Polymers in Solution

ADVANTAGES of LATTICE MODELS:

excluded volume property is easily incorporated substantial conformational freedom available combinatorial analysis possible qualitative features of phase diagrams expected to be correct values of critical exponents expected to be exact

MODELS of LINEAR and RING POLYMERS:

SELF-AVOIDING WALK

CIRCLE GRAPH

SELF-AVOIDING POLYGON

Properties of Self-avoiding Polygons (SAPs) in \mathbb{Z}^{d}
 Standard Concatenation Argument

$$
\begin{gathered}
\begin{array}{|c}
p_{n} p_{m} \leq(d-1) p_{n+m} ; p_{n} \leq(2 d)^{n}
\end{array} \Rightarrow \lim _{n \rightarrow \infty} \frac{1}{2 n} \log p_{2 n} \equiv \log \mu_{d}=\kappa_{d} \\
\text { (Hammersley Proc.Camb.Phil.Soc. 58(1961), 235-8) } \\
p_{n}(\phi) p_{m}(\phi) \leq 2 p_{n+m}(\phi) ; p_{n}(\phi) \leq p_{n} \Rightarrow \lim _{n \rightarrow \infty} \frac{1}{2 n} \log p_{2 n}(\phi) \equiv \log \mu_{0}=\kappa_{0} \\
\text { (Sumners and Whittington JPA 21 } 1988), 1689-94) \\
\kappa_{o}<\kappa_{3} \Rightarrow \text { Prob. of Knotting }=1-\frac{p_{n}(\phi)}{p_{n}}=1-e^{-\left(\kappa-\kappa_{o}\right) n+o(n)}
\end{gathered}
$$

Key ingredient: Pattern theorem (Kesten, 1963) used to prove that "tight trefoil" pattern occurs at least once in all but exponentially few sufficiently long SAPs.

Good Measures of Knot Complexity

Results extended in several directions ... Soteros, Sumners and Whittington (1992
MathProcCambPhilSoc 111 75)
Good Measures of Knot Complexity: Function $F: \mathcal{K} \rightarrow[0, \infty)$ s.t.
(i) $F(\phi)=0$
(ii) $\exists K \in \mathcal{K}$ s.t. $F(n K \# L) \geq n F(K)>0 \forall L \in \mathcal{K}$ (i.e. roughly additive w.r.t. knot product)

Then Sumners \& Whittington (1988) \Rightarrow
If F is a good measure of knot complexity, let K be a knot which satisfies part (ii) above. Then, there exists $n_{K}, A_{k}>0$ s.t. $\forall n>n_{K}$ all but exponentially few n-SAPs have F-complexity exceeding $A_{K} n$.

Examples of Good Measures: Crossing number, number of prime factors, genus, bridge number minus one, span of any non-trivial Laurent knot polynomial, log(order), unknotting number, minor index, braid index minus one.

For Dense Polymer Solutions or Polymer Melts, What is a "Good" Measure of Entanglement Complexity?

Electron micrograph of a $0.4 \mathrm{mg} / \mathrm{ml}$ actin solution polymerized in vitro. Bar $=1 \mu \mathrm{~m}$. (Gotter et al arXiv:cond-mat/9611097 v1 20 Nov 1995.)

Orlandini, Tesi and Whittington 2000 - characterize entanglement by "linking number" for a tube or cube from solution.

Orlandini et al (2000) Measure for Entanglement Complexity in Dense Systems

Proposal: Take a random cube (or tube) from n-edge system composed of c chains. Assume endpts are in the cube boundary and no edges in the boundary. For each pair (i, j) of chains, join up the two ends of each chain by an arc outside the cube and compute linking number $L k(i, j)=\frac{1}{2} \sum_{m} \sigma_{m}$.
Entanglement Measure: $E C=\sum_{i=1}^{k-1} \sum_{j>i}|L k(i, j)|$

Regular Projections of Two Chains

Density dependence of $\langle E C\rangle$ for cube size 10

What Can Be Proved About This Entanglement Measure? SSAWs in $\infty \times N \times M$ Tube

Define: A System of Self-avoiding Walks (SSAW) of size n, span s and with c components in an (N, M)-tube is a finite subgraph of the tube with n-edges and c connected components s.t.
(i) each connected component is an undirected SAW (USAW) with its endpts in a tube wall (e.g. $y=0$, $y=N, z=0$ or $z=M$) and no degree two vertices in any wall of the tube
(ii) for each integer $m \in[0, s]$, there is at least one vertex of the SSAW in the plane $x=m$ and no vertices in $x=m, \forall m \notin[0, s]$.
$\boldsymbol{q}_{\boldsymbol{s}}(\boldsymbol{N}, \boldsymbol{M} ; \boldsymbol{n}, \boldsymbol{c})$ - \# of \boldsymbol{n}-edge, span $\boldsymbol{s}, \boldsymbol{c}$-component SSAWs in ($\boldsymbol{N}, \boldsymbol{M}$)-tube (up to \boldsymbol{x}-translation) Note: $c=\frac{1}{2} \times(\#$ of degree one vertices in SSAW)

Concatenation of SSAWs:

G_{1}

G
$\mathrm{SSAW} \boldsymbol{G}(\boldsymbol{s}=\mathbf{7}, \boldsymbol{n}=\mathbf{3 1}, \boldsymbol{c}=\mathbf{9})$,
the concatenation of $\boldsymbol{G}_{\mathbf{1}}$ and $\boldsymbol{G}_{\mathbf{2}}$.

Concatenation gives
$\boldsymbol{q}_{s_{1}}\left(N, M ; n_{1}, c_{1}\right) q_{s_{2}}\left(N, M ; n_{2}, c_{2}\right) \leq q_{s_{1}+s_{2}+1}\left(N, M ; n_{1}+n_{2}, c_{1}+c_{2}\right)$
\Rightarrow (via standard arguments, c.f. Janse van Rensburg 2000)
the existence of the limiting free energy:

$$
F(N, M ; x, y)=\lim _{s \rightarrow \infty} \frac{1}{s} \log Z_{s}(N, M ; x, y)
$$

where

$$
Z_{s}(N, M ; x, y)=\sum_{n, c} q_{s}(N, M ; n, c) x^{n} y^{c}
$$

$F(N, M ; x, y)=\lim _{s \rightarrow \infty} \frac{1}{s} \log Z_{s}(N, M ; x, y) ; \quad Z_{s}(N, M ; x, y)=\sum_{n, c} q_{s}(N, M ; n, c) x^{n} y^{c}$.
Plus $\boldsymbol{F}(\boldsymbol{N}, \boldsymbol{M} ; \boldsymbol{x}, \boldsymbol{y})$ is
(i) a convex function of $\log \boldsymbol{x}($ for fixed $\boldsymbol{y})$ and $\operatorname{of} \log \boldsymbol{y}($ for fixed $\boldsymbol{x})$;
(ii) its right and left derivatives in \boldsymbol{x} (for fixed \boldsymbol{y}) and in \boldsymbol{y} (for fixed \boldsymbol{x}) exist everywhere in $(\mathbf{0}, \boldsymbol{\infty})$;
(iii) it is differentiable almost everywhere, and when the derivative exists the order of the limit and derivative can be interchanged.
\Rightarrow
For r.v. \boldsymbol{X} with state space span s SSAWs and $\mathbb{P}(X=G)=\frac{x^{n(G)} y^{c(G)}}{Z_{s}(N, M ; \boldsymbol{x}, \boldsymbol{y})}$
$\lim _{s \rightarrow \infty} \frac{\mathbb{E}[\boldsymbol{n}(\boldsymbol{X})]}{\boldsymbol{s}}$ exists a.e. and is non-decreasing in \boldsymbol{x}, i.e.
For fixed $(\boldsymbol{x}, \boldsymbol{y})$, the avg. edge-density $\frac{\mathbb{E}[\boldsymbol{n}(\boldsymbol{X})]}{\boldsymbol{s N M}}$ goes to $\rho_{\boldsymbol{e}}(\boldsymbol{x}, \boldsymbol{y})$ as $\boldsymbol{s} \rightarrow \infty$, and \uparrow as $\boldsymbol{x} \uparrow$.
$\lim _{s \rightarrow \infty} \frac{\mathbb{E}[c(\boldsymbol{X})]}{s}$ exists a.e. and is non-decreasing in \boldsymbol{y}, i.e.
For fixed $(\boldsymbol{x}, \boldsymbol{y})$, the avg. walk-density goes to $\rho_{\boldsymbol{w}}(\boldsymbol{x}, \boldsymbol{y})$ as $\boldsymbol{s} \rightarrow \infty$, and \uparrow as $\boldsymbol{y} \uparrow$.

Entanglement Complexity of SSAWs in $\infty \times N \times M$ Tube

A two-component link K_{12} is associated to a pair of USAWs $\left(\bar{w}_{1}, \bar{w}_{2}\right)$.
The following result has been proved (c.f. Atapour, PhD thesis):
Corollary 1 Given an n-edge SSAW G, let $w_{1}, \ldots w_{c}$ be the sequence of USAWs in G. Let \bar{G} be the SSAW associated to G as prescribed in Lemma 6.2.1. For any $1 \leq i<j \leq k$, there exists a two-component polygonal link $K_{i j}=\left(K_{i}, K_{j}\right)$ corresponding to the pair of USAWs $\left(w_{i}, w_{j}\right)$ such that when it is projected into the xy-plane those edges of $K_{i j}$ which lie outside B_{G} will create no crossing with the edges inside B_{G} and at most one crossing, involving both polygons K_{i} and K_{j}, amongst themselves.

The Entanglement Complexity, $E C(G)$, of any SSAW G is now defined as follows:

$$
\begin{equation*}
E C(G)=\sum_{i=1}^{c-1} \sum_{j=i+1}^{c}\left|L k\left(K_{i j}\right)\right| \tag{1}
\end{equation*}
$$

where $L k\left(K_{i j}\right)$ is the linking number of $K_{i j}$.

Upper Bound on EC of SSAWs: Since one can bound the number of crossings associated with an edge of the SSAW by a constant (dependent only on N and M), the $E C$-complexity can be bounded above by a linear function of n or s :
(i) Given a pair of SAWs, we can extend their endpts (by adding at most a(N, M) edges) so that the new endpoints are "away" from the tube.
(ii) For any $\epsilon>0$, there exists a "push-off" of the walk pair which has a regular projection in the (x, y)-plane such that the (x, y) coordinates of walk vertices are within ϵ of their values in the regular projection. The endpoints will be on the boundary of the projection.
$\Rightarrow E C=\sum_{i=1}^{c-1} \sum_{j>i}|L k(i, j)| \leq \sum_{i=1}^{c} \sum_{m=1}^{n_{i}} C(i, m)+\sum_{i=1}^{c} e x(i)$
$n_{i}:=$ number of edges in the i th SAW

$C(i, m):=$ the number of edges crossed by the m th edge of the i th SAW \leq the number of edges E in a $3 \times(N+2) \times M$ slice of the lattice
$e x(i):=$ the number of walk pairs involving the i th walk which could result in an extra crossing \leq the number of walks (other than the i th) which have vertices in a slice of the tube determined by the location of the endpts of the i th walk \leq number of vertices in that tube slice $\leq(N+2)(M+1) n_{i}$

$$
\Rightarrow E C=\sum_{i=1}^{c-1} \sum_{j>i}|L k(i, j)| \leq d(N, M) n \leq d d(N, M) s
$$

A Lower Bound for EC of SSAWs in Tubes

$q_{s}(N, M ; n, c ;<m, P)$ - \# of n-edge, span s, c-component SSAWs in (N, M)-tube (up to x-translation) which contain less than m translates of pattern P
A Pattern Theorem would allow us to compare:

$$
\begin{aligned}
& F(N, M ; x, y ; \epsilon, P)=\lim _{s \rightarrow \infty} \frac{1}{s} \log Z_{s}(N, M ; x, y ; \epsilon, P) \\
& \quad Z_{s}(N, M ; x, y ; \epsilon, P)=\sum_{n, c} q_{s}(N, M ; n, c ;<\epsilon s, P) x^{n} y^{c}
\end{aligned}
$$

to

$$
\begin{gathered}
F(N, M ; x, y)=\lim _{s \rightarrow \infty} \frac{1}{s} \log Z_{s}(N, M ; x, y) \\
Z_{s}(N, M ; x, y)=\sum_{n, c} q_{s}(N, M ; n, c) x^{n} y^{c}
\end{gathered}
$$

If $F(N, M ; x, y ; \epsilon, P)<F(N, M ; x, y)$ then
\Rightarrow All but exponentially few sufficiently wide span

s "weighted" SSAWs contain at least ϵs translates of P.
Since P cannot occur
more than ϵs times in an SSAW with $E C \leq \epsilon s \Rightarrow$
(i) All but exponentially
few sufficiently wide SSAWs have entanglement measure $E C>\epsilon s$, i.e. $E C$ grows at least linearly in the span.
(ii) The probability that a span
s SSAW has $E C$ greater than ϵs goes to 1 as $s \rightarrow \infty$
HENCE A PATTERN THEOREM IS NEEDED - TRANSFER MATRIX WILL BE USED

Transfer Matrix for SSAWs: Given $k \geq 2$, an SSAW is a sequence of overlapping k-configs.

\mathcal{S}_{k} : set of all possible SSAW k-configs
$\mathcal{S}_{k, o}$: subset of \mathcal{S}_{k} that are start k-configs
$\mathcal{S}_{k, f}$: subset of \mathcal{S}_{k} that are end k-configs
$\mathcal{G}_{k}=(V, A):$
graph with vertex set $V=\mathcal{S}_{k}=\left\{P_{1}, P_{2}, \ldots\right\}$
and $\operatorname{arc}\left(P_{i}, P_{j}\right) \in A$ iff $P_{i} P_{j}$ is in \mathcal{S}_{k+1}.
Any walk on \mathcal{G}_{k} starting
in $\mathcal{S}_{k, o}$ and ending in $\mathcal{S}_{k, f}$ corresponds to an SSAW.

Transfer Matrix for SSAWS: Given $k \geq 2$ and \mathcal{G}_{k}
$\mathcal{G}_{k}=(V, A):$
graph with vertex set $V=\mathcal{S}_{k}=\left\{P_{1}, P_{2}, \ldots\right\}$
and $\operatorname{arc}\left(P_{i}, P_{j}\right) \in A$ iff $P_{i} P_{j}$ is in \mathcal{S}_{k+1}.
Any walk on \mathcal{G}_{k} starting
in $\mathcal{S}_{k, o}$ and ending in $\mathcal{S}_{k, f}$ corresponds to an SSAW.
Simplest Transfer Matrix: $T=\left(T_{i, j}\right)$
$T_{i, j}=\left\{\begin{array}{lr}1, & \left(P_{i}, P_{j}\right) \in A \\ 0, & \text { otherwise }\end{array}\right.$

\Rightarrow
$\left(T^{r}\right)_{i, j}=\#$ of $(k+r)$-configs starting with $P_{i} \&$ ending with P_{j}.
If $P_{i} \in \mathcal{S}_{k, o}$ and $P_{j} \in \mathcal{S}_{k, f}$, then they are SSAWs.

More General Transfer Matrix for SSAWS:

Recall: X a r.v. with state space all span s SSAWs.
$\mathbb{P}(X=G)=\frac{x^{n(G)} y^{c(G)}}{Z_{s}(N, M ; x, y)}$
$n(G)$ - \# of edges of $G ; c(G)$ - \# of walks in G (i.e. \# of connected components)
Grand Canonial Partition function:

$$
Q(x, y, z)=\sum_{s, n, c} q_{s}(N, M ; n, c) x^{n} y^{c} z^{s}=\sum_{s} Z_{s}(N, M ; x, y) z^{s} .
$$

$-\log R_{Q}(x, y)=$
$F(N, M ; x, y)=\lim _{s \rightarrow \infty} s^{-1} \log Z_{s}(N, M ; x, y)$
Given $k \geq 2$ and \mathcal{G}_{k}
General Transfer Matrix: $T=\left(T_{i, j}\right)$
$T_{i, j}=\left\{\begin{array}{lr}z^{s\left(P_{i}, P_{j}\right)} x^{n\left(P_{i}, P_{j}\right)} y^{c\left(P_{i}, P_{j}\right)}, & \left(P_{i}, P_{j}\right) \in A \\ 0, & \text { otherwise }\end{array}\right.$
\Rightarrow

$Q(x, y, z)=\sum_{r=0}^{\infty} \sum_{\left\{i: P_{i} \in \mathcal{S}_{k, o}\right\}} \sum_{\left\{j: P_{j} \in \mathcal{S}_{k, f}\right\}}\left(T^{r}\right)_{i, j}=\frac{f(x, y, z)}{\operatorname{det}(I-T)}$.
where $f(x, y, z)$ is analytic.

Consequences of the Transfer Matrix Representation

$q_{s}(N, M ; n, c ; \bar{P})$ - \# of n-edge, span s, c-component SSAWs in (N, M)-tube (up to x-translation) which DO NOT contain pattern P
$Z_{s}(N, M ; x, y ; \bar{P})=\sum_{n, c} q_{s}(N, M ; n, c ; \bar{P}) x^{n} y^{c}$.
The transfer matrix and Perron-Frobenius Theory \Rightarrow $F(N, M ; x, y ; \bar{P})=\lim _{s \rightarrow \infty} \frac{1}{s} \log Z_{s}(N, M ; x, y ; \bar{P})$
is strictly less than
$F(N, M ; x, y)=\lim _{s \rightarrow \infty} \frac{1}{s} \log Z_{s}(N, M ; x, y)$

Moreover, for any non-negative integer valued additive functional ψ defined for SSAWs, there exists $\gamma_{\psi, x, y}>0$ (can be determined from the eigenvalues and eigenvectors of T) such that as $s \rightarrow \infty$

$$
\mathbb{E}[\psi(X)]=\left(\gamma_{\psi, x, y}\right) s+O(1)
$$

HENCE:

For the edge count: $\quad \mathbb{E}[n(X)]=\left(\gamma_{e, x, y}\right) s+O(1)$
For the walk count: $\quad \mathbb{E}[c(X)]=\left(\gamma_{w, x, y}\right) s+O(1)$
For $n_{P}(X)$ - \# of translates of P occurring in $X: \quad \mathbb{E}\left[n_{P}(X)\right]=\left(\gamma_{P, x, y}\right) s+O(1)$
For $n_{\times}(X)$ - \# of crossings in a regular projection of $X: \quad \mathbb{E}\left[n_{\times}(X)\right]=\left(\gamma_{\times, x, y}\right) s+O(1)$

For the Entanglement Complexity Measure EC:

$$
\left(\gamma_{P, x, y}\right) s+O(1) \leq \mathbb{E}[E C(X)] \leq\left(\gamma_{\times, x, y}\right) s+d^{\prime}(N, M) s+O(1)
$$

EC IS A GOOD MEASURE OF ENTANGLEMENT COMPLEXITY

Future Work

For the Entanglement Complexity Measure $E C$:

$$
\left(\gamma_{P, x, y}\right) s+O(1) \leq \mathbb{E}[E C(X)] \leq\left(\gamma_{\times, x, y}\right) s+d^{\prime}(N, M) s+O(1)
$$

How do the γ 's change with (x, y) ? i.e. How does avg. $E C(X)$ change as the edge-density and the walk-density change?

For fixed limiting edge-density:

$$
f(N, M ; \alpha) \equiv \lim _{s \rightarrow \infty} s^{-1} \log q_{s}(N, M ;\lfloor\alpha s\rfloor)
$$

where $q_{s}(N, M ;\lfloor\alpha s\rfloor)$ is the \# of span $s,\lfloor\alpha s\rfloor$-edge SSAWs (up-to x-translation). What do these results mean for $E C$?

What happens as N and M change?
What about other measures of Entanglement Complexity?

Stretching a Polygon in an (N, M)-Tube

$p_{n}(N, M ; s)$: \# of \boldsymbol{n}-edge, span s SAPs in (N, M)-tube
$\hat{Z}_{n}(N, M ; x)=\sum_{s} p_{n}(N, M ; s) e^{f s}$
where $x=e^{f}$
Standard concatenation argument for SAPs in a tube \Rightarrow
$\hat{F}(N, M ; x)=\lim _{n \rightarrow \infty} n^{-1} \log \hat{Z}_{n}(N, M ; x)$ exists.

For r.v. \boldsymbol{X} with state space \boldsymbol{n}-edge SAPs,
$\mathbb{P}(X=\omega)=\frac{x^{s}}{\hat{Z}_{n}(N, M ; x)}=\frac{e^{f s}}{\hat{Z}_{n}\left(N, M ; e^{f}\right)}$
Transfer matrix arguments \Rightarrow
$\mathbb{E}[s(X)]=\frac{1}{\rho_{e}(f)} n+O(1)$
and is non-decreasing in \boldsymbol{f}.
 fixed force $f>0$; note that the tube is rotated 90 degrees counterclockwise.

Knot Complexity of Stretched Polygons in a Tube

$\boldsymbol{p}_{\boldsymbol{n}}(\boldsymbol{N}, \boldsymbol{M} ; \boldsymbol{s} ; \overline{\boldsymbol{P}})$: \# of \boldsymbol{n}-edge, span \boldsymbol{s} SAPs in $(\boldsymbol{N}, \boldsymbol{M})$-tube which do NOT contain pattern \boldsymbol{P} $\hat{Z}_{n}(N, M ; x ; \bar{P})=\sum_{s} p_{n}(N, M ; s ; \bar{P}) e^{f s}$, where $x=e^{f}$

A concatenation argument for SAPs in a tube \Rightarrow
$\hat{F}(N, M ; x ; \bar{P})=\lim _{n \rightarrow \infty} n^{-1} \log \hat{Z}_{n}(N, M ; x ; \bar{P})$ exists.

Transfer-matrix arguments \Rightarrow
$\hat{\boldsymbol{F}}(\boldsymbol{N}, M ; \boldsymbol{x} ; \overline{\boldsymbol{P}})<\hat{\boldsymbol{F}}(\boldsymbol{N}, M ; \boldsymbol{x})$
$\mathbb{E}\left[n_{P}(X)\right]=\left(\gamma_{P, f}\right) n+O(1)$
For any \boldsymbol{f}, all sufficiently long
\boldsymbol{n}-edge SAPs under the influence of the force \boldsymbol{f} contain at least $\gamma_{P, f} \boldsymbol{n}$ trefoils in their knot decomposition.

Part of a tight
trefoil pattern for
the tube.

