Modeling filament supercoiling for nucleosome and viral spooling

Francesca Maggioni^(*)

Mathematics Department, University of Bergamo ITALY

 $^{(\ast)}{}_{joint\ work\ with}$ Renzo L. Ricca

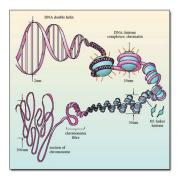
Conference on Knots and other Entanglements in Biopolymers: Topological and Geometrical Aspects of DNA, RNA and Protein Structures

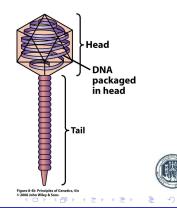
Trieste, 14-19 September, 2008

DNA supercoiling for nucleosome and viral spooling

DNA supercoiling

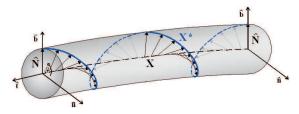
- geometric and topological informations;
- energetic aspects;
- filament compaction;
- packing efficiency;





The filament model

• The DNA filament \mathscr{F} is modelled by a thin inexestensible rod of constant length $L = 2\pi$ and uniform circular cross-section of area $A = \pi a^2$ with $a/L \ll 1$.



• The filament axis \mathscr{C} is given by a simple, smooth space curve $\mathbf{X}(s)$.

• Each fiber \mathscr{C}^* is given by

$$\mathbf{X}^{*}\left(s\right) = \mathbf{X}\left(s\right) + \epsilon \hat{\mathbf{N}}\left(s\right)$$

with $\hat{\mathbf{N}}(s) = \hat{\mathbf{n}} \cos \vartheta \left(s\right) + \hat{\mathbf{b}} \sin \vartheta \left(s\right)$. • $\left(\mathbf{X}, \hat{\mathbf{N}}\right)$ defines a *ribbon* of edges **X** and **X**^{*}.

Global geometric and topological quantities

Let \mathscr{C} be a simple closed, smooth curve in \mathbb{R}^3 : $\mathbf{X}(s): [0, L] \longrightarrow \mathbb{R}^3$;

Definition

• The writhing number (Fuller 1971)

$$Wr(\mathscr{C}) \equiv \frac{1}{4\pi} \oint_{\mathscr{C}} \oint_{\mathscr{C}} \frac{\hat{\mathbf{t}}(s) \times \hat{\mathbf{t}}(s^*) \cdot [\mathbf{X}(s) - \mathbf{X}(s^*)]}{|\mathbf{X}(s) - \mathbf{X}(s^*)|^3} \,\mathrm{ds} \,\mathrm{ds}^* \;; \quad (1)$$

• The total twist number Tw (Love 1944)

$$Tw := \frac{1}{2\pi} \oint_{\mathscr{C}} \tau(\xi) \| \mathbf{X}'(\xi) \| \, \mathrm{d}\xi + \frac{1}{2\pi} [\Theta]_{\mathscr{F}} = \mathcal{T} + \mathcal{N} \; ; \tag{2}$$

Theorem (Călugăreanu, 1959 and White, 1969)

Linking number

$$Lk = Wr + Tw$$

Francesca Maggioni & Renzo L. Ricca Modeling filament supercoiling for nucleosome and viral spooling

(3)

Hierarchical kinematics for folding mechanism

We explore the folding mechanism by a family of time-dependent curves $\mathbf{X} = \mathbf{X}(\xi, t)$ (where t is a kinematical time) given by

$$\mathbf{X}(\xi, t) = \mathbf{Y}(\xi, t) + \mathbf{Z}(\xi, t) + \dots \text{ (higher-order folding)}, \qquad (4)$$

where

• $\mathbf{Y} = \mathbf{Y}(\xi, t)$ is a base curve which stands for the *primary structure* of the macromolecule;

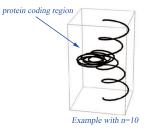
• $\mathbf{Z} = \mathbf{Z}(\xi, t)$ generates coiling and prescribes the evolution of the *primary* folding.

Modeling nucleosome spooling

A simplified model of nucleosome spooling is provided by the following example:

$$\mathbf{X} = \mathbf{X}(\xi, t; n) : \begin{cases} x = [\cos \xi - t \cos(n\xi)]/l(t) \\ y = [\sin \xi - t \sin(n\xi)]/l(t) \\ z = [\xi + t \sin \xi]/l(t) \end{cases}$$
(5)

where
$$l(t) = \frac{1}{2\pi} \int_0^{2\pi} \left[\left(\frac{\partial x}{\partial \xi} \right)^2 + \left(\frac{\partial y}{\partial \xi} \right)^2 + \left(\frac{\partial z}{\partial \xi} \right)^2 \right]^{1/2} \mathrm{d}\xi$$

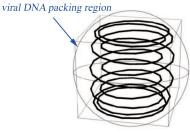


Modeling viral spooling

A simplified model of viral spooling is provided by the following example:

$$\mathbf{X} = \mathbf{X}(\xi, t; n) : \begin{cases} x = [\cos \xi - t \cos(n\xi)]/l(t) \\ y = [\sin \xi - t \sin(n\xi)]/l(t) \\ z = t \sin \xi/l(t) \end{cases}$$
(6)

where n > 0 and l(t) the length function.

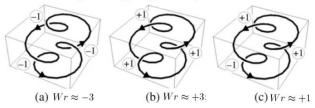


Example with n=10

Bounded writhe and twist

• Interpretation of Wr in terms of the average number of signed crossings:

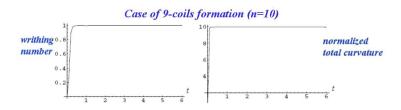
Different types of 3-coils formation



- Bounded writhing number $Wr \in [0, 1]$ irrespectively of the number N = n 1 of coils formed (case (c) in the Figure above).
- During coils formation the topology is conserved, then the total twist number Tw is bounded too.

- 4 E b

Comparative analysis of writhing rates and normalized total curvature



- Similarity in functional behavior between the growths of the writhing number Wr and normalized total curvature K.
- The normalized total curvature $\mathcal{K} \in [0, n]$ i.e. it is limited by the number N = n 1 of coils formed.

Bending, torsional and mean twist energy

Let us consider the **linear elastic theory** for a uniformly homogeneous and isotropic filament ($\chi=K_b/K_t=1$) .

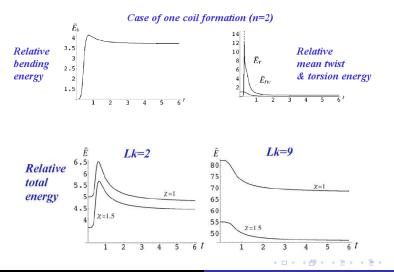
• The deformation energy is given (to first order) by

 $E = E_b + E_t + \dots \text{ (higher order terms)}$ (7)

where

$$\begin{split} \tilde{E}_{b}(t) &= \frac{E_{b}(t)}{E_{0}} = \frac{1}{2\pi} \oint_{\mathscr{C}} (c(\xi,t))^{2} |\mathbf{X}'(\xi)| \,\mathrm{d}\xi \quad \text{norm. bending energy} \\ \tilde{E}_{t}(t) &= \frac{E_{t}(t)}{E_{0}} = \frac{1}{2\pi} \oint_{\mathscr{C}} (\Omega(\xi))^{2} \,|\mathbf{X}'(\xi)|^{2} \mathrm{d}\xi \quad \text{norm. torsional energy} \\ \tilde{E}_{\tau}(t) &= \frac{E_{\tau}(t)}{E_{0}} = \frac{1}{2\pi} \oint_{\mathscr{C}} (\tau(\xi,t))^{2} |\mathbf{X}'(\xi)| \,\mathrm{d}\xi \quad \text{norm. torsion energy} \\ \tilde{E}_{tw} &= E_{t}|_{\Omega_{0}} = (Lk - Wr(t))^{2} \quad \text{norm. mean twist energy }; \\ E_{0} &= \frac{K_{b}}{2} \oint_{\mathscr{C}} c_{0}^{2} \,\mathrm{d}s \quad \text{reference energy} = \pi K_{b} \;. \end{split}$$

Comparative behaviour of relative energy: 1 coil formation

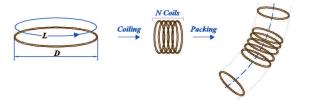


Francesca Maggioni & Renzo L. Ricca

Modeling filament supercoiling for nucleosome and viral spooling

Compactibility and packing rate

Typical DNA compaction: $D/L = O(10^{-5})$.



If ρ is the *average radius of curvature* of the coiled state, then we have

$$L = 2\pi = (N+1) \, 2\pi\rho \; ;$$

if N = N(t) then the *packing rate* is given by $\rho(t) = [N(t) + 1]^{-1}$. In general, for the k - th order coiling, starting from a fundamental structure of length l_0 to the final structure of length L we have

$$L = O(N^k l_0)$$
 where $N = \prod_k N_k \implies \rho(t) = O(1/N(t)^k)$,

which clearly shows a *nonlinear dependence* on N(t).

Future work and References

Future work

- Structural complexity and packing;
- Inflexional states and energy localization.

References

- Maggioni, F. & Ricca, R.L. (2006) Writhing and coiling of closed filaments. *Proc. Roy. Soc. A*, **462**, 3151–3166.
- Ricca, R.L. & Maggioni, F. (2008)
 Multiple folding and packing in DNA modeling. Comp. & Math. with Appl, 55, 1044–1053.
- Maggioni, F. & Ricca, R.L., (2007)
 DNA supercoiling modeling of nucleosome and viral spooling, In *Proceedings of ICIAM07*, Zürich, 7(1), 2120011-2120012.

Loop deformation and inflexional states

Generic behaviour (Moffatt & Ricca, 1992):

$$\tau\left(\xi,t\right) = \frac{\mathbf{X}' \times \mathbf{X}'' \cdot \mathbf{X}'''}{\left|\mathbf{X}' \times \mathbf{X}''\right|^2} \to \infty \text{ as } \left\{\xi,t\right\} \to \left\{\xi_i,t_i\right\}, \text{ but } \left[\mathcal{T}\right] = 1.$$

