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Tomography maps with superimposed cellular grid: a) group velocity, b)
phase velocity

Inverse problem
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Model m Data y

Forward problem

Inverse problem

 

Relation between
models space M
and observations
space Y
(Yanovskaya,
2003)

direct

inverse
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Non-linear inversion

 

Structural model is a
stack of N
h o m o g e n e o u s
isotropic layers, each
one defined by
compressional (Vp)
and shear (Vs) wave
velocities, thickness
(h) and density (�).
Boundaries between
two layers are
indicated with (m).
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Nafe and Drake
curve (e.g.
Fowler, 1995;
Ludwig et al.,
1970) that
connects
seismic
velocities and
density.

 

Relationship
between P-wave
velocity, density and
S-wave velocity for
PREM. Points
represent the PREM
(Dziewonski and
Anderson, 1981)
values, lines
represent a possible
approximation to be
used in inversion
studies (from
Yanovskaya and
Kozhevnikov, 2003).
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Acceptable solutions (dots) in a six-dimension model space. Thickness (h) and V
s
 are inverted

for three layers (the parameters P1-P2, P4-P3 and P6-P5 are the three couples h-V
s
 for the

three layers). In the main horizontal scale (bold characters) P3 (Vs); in the main vertical scale

(bold characters) P1 (h); the horizontal and vertical scales for each composite grid are for P5

and P2 (V
s
). Each little grid (see uppermost left corner) is for P4 and P6 (h).

The Resolution
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 A description of model variance corresponding to the data

variances, in a N-dimensional parameter space, requires the
specification of a large number of values. To simplify this
task, it is possible to choose to list the diagonal elements of
the model error matrix (i.e. the covariance matrix multiplied
by � - 2), which are the intercepts of the solution ellipsoid

with the parameter axes Pj:
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where V(Ti) and �(Ti) are considered equal to U(Ti)
and �U(Ti) for the group velocity case, or equal to c(Ti)
and �c(Ti) for the phase velocity case, or any other
relevant parameter.

(1)

(A) Examples of partial

derivatives of the phase

velocity of Rayleigh waves

with respect to shear-

wave velocity of the

fundamental mode at

100 s (solid line), 50 s

(dotted line) and 30 s

(dashed line).

(B) Examples of partial

derivatives of the group

velocity of Rayleigh waves

with respect to shear-

wave velocity of the

fundamental

mode at 30 s (solid line),

20 s (dotted line) and 10 s

(dashed line).

All partial derivatives are

normalized with

respect to the layer

thickness.
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If the parameter Pj is allowed to vary by an amount �Pj

from its starting value, while the others are held fixed at
the starting value, then the r.m.s. difference between
the exact result and the model result is:
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which can be set equal to the pre-assigned value �.

(2)

 The quantities given by (1) can be equalized
to the standard deviation in the parameters
Pj for the case in which all the other
parameters Pi (i ) are kept fixed at their
starting values. Thus the tabulation of the
items (1) does give some rough information
regarding the resolution of the parameter Pj

by the data set and the quantities (1) can be
called the resolution, despite the fact that
this definition is inconsistent with other
usages in the literature.
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In absence of correlation among parameters, the
maximum resolution for a given model parameter, Pj,
could be achieved by retaining only one datum, V(Ti),
specifically that for which it is satisfied the condition:
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The parameters are, in general, not independent, thus the
resolution of each is poorer than the values obtained by
(3) and the full problem requires the determination of the
period for which the quantities �Pj are minima subject to
the condition:

(3)
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j

� �(Ti)

In applying the hedgehog inversion, the parameterization is

defined so that the parameter steps are minima, subject to

the condition (4). Therefore for all the solutions of the

hedgehog inversion, the step, ai
Pj, for each parameter Pj is

such that ai=±1 or 0, at the end of the inversion. In this way

each parameter step represents a satisfactory estimate of

the uncertainty affecting each parameter.

(4)
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The effect

of different constraints in
the a priori fixed structure

and

of different parameterization

TEST-1: we show that the
inversion of the same phase
velocity but of group velocity that
differ for T�25 s can be consistent
with significantly different models,
depending on the constraints
imposed by the a priori
knowledge, about the uppermost
structure.
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Results of tests 1, 2 and 3. (a1, a2, a3) Sets of solutions (thin lines)

obtained through the non–linear inversion of the dispersion relations

shown in (b1, b2, b3). The investigated parameter’s spaces (grey zones)

and the chosen solutions (bold lines) are shown as well. The

parameterization used in the inversion is given in Tab. 4. (b1, b2, b3)

Group (U) and phase (C) velocity curves used in the tests (see Tab. 3).

TEST-2: inversion of the same
dispersion curves with three different
parameterizations. In the three cases
are inverted the thickness and
velocity of:

5 layers (case-1),

4 layers (case-2) and

6 layers (case-3).
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Results of tests 1, 2 and 3. (a1, a2, a3) Sets of solutions (thin lines)

obtained through the non–linear inversion of the dispersion relations

shown in (b1, b2, b3). The investigated parameter’s spaces (grey zones)

and the chosen solutions (bold lines) are shown as well. The

parameterization used in the inversion is given in Tab. 4. (b1, b2, b3)

Group (U) and phase (C) velocity curves used in the tests (see Tab. 3).

The parameterization does not affect
the uppermost structure (a low
velocity layer is present in all the
cases). From the number of the
obtained solutions (20, 10 and 40
respectively) and from the type of
solutions obtained, 5 layers (10
parameters) is the optimum number
of layers to invert in the depth
interval that we are investigating.
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At depth larger than 100 km
the structures in case-1 and 3
have very similar trend, whilst
the rough parametrization in
case-2 misses a relevant
feature like the mantle lvz seen
in cases 1 and 3.

TEST-3: the dispersion curves
and the parameterization used
for the three cases are the
same as in TEST-1 but starting
values, variability ranges and
steps of the parameters are
the same for the three cases.
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Results of tests 1, 2 and 3. (a1, a2, a3) Sets of solutions (thin lines)

obtained through the non–linear inversion of the dispersion relations

shown in (b1, b2, b3). The investigated parameter’s spaces (grey zones)

and the chosen solutions (bold lines) are shown as well. The

parameterization used in the inversion is given in Tab. 4. (b1, b2, b3)

Group (U) and phase (C) velocity curves used in the tests (see Tab. 3).

This test, as well as TEST-1, shows
that the sets of structures are quite
different also at mantle depths even
if the inversion is performed for the
same phase velocities and same
parameterization but by slightly
different group velocities and
different a priori constraints at
crustal level.
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Furthermore, a comparison between the
sets of solutions of TEST-1 and TEST-3
shows that if the result is not so different
for case-2, it is different at crustal and
uppermost mantle depths for cases 1
and 3. Thus, not only the number of
layers inverted but also the values of the
incremental step of the parameters are
important, and they must be chosen
accordingly to condition (4).

The choice of
the

representative
solution



16

Two typical approaches: (a) choosing
the ‘Median Model’ of all the solutions
(Shapiro and Ritzwoller, 2002) as
representative model; (b) choosing
the model characterized by the
minimum r.m.s. Other approaches are
inspired by William of Occam, who
wrote “it is vain to do with more what
can be done with fewer” (see Russell,
1946, ch.14).

What has become known as
Occam’s razor has become
fundamental in modern
science, i.e. hypotheses
should be neither
u n n e c e s s a r i l y
complicated nor
unnecessarily numerous.
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Taking into account the origin of the
problem (surface waves tomography –
an intrinsically smoothing technique), the
developed criteria of optimization
consists in finding for each cell, the
representative solution so that the lateral
velocity gradient between neighbouring
cells is minimized. One motivation for
seeking smooth global models is that we
want to avoid the introduction of
heterogeneities that can possibly arise
from a subjective choice.

Starting from the search of the
representative solution in one
cell (called starting cell) we
look for the representative
solution in all the other cells of
the studied domain W,
following the criteria of
maximum smoothness.
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The method is fast but it depends
from the starting cell that can be
chosen either by objective
criteria, e.g. the cell where the
solutions are the densest in the
parameter’s space, or by
adequate geophysical and
geological information.

Other methods of
optimization, more
independent from the single
starting cell, have been
developed based on dynamic
programming method (e.g.,
Bryson et al., 1975).
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Short description of LSO, GSO
and GFO

The non-linear inversion of geophysical data

in general does not yield a unique solution,

but a single model representing the

investigated field is preferred for an easy

geological interpretation of observations. The

analyzed region is constituted by a number of

sub-regions where multi-valued non-linear

inversion is applied, which leads to a multi-

valued solution.

Therefore, combining the values of the

solution in each sub-region, many

acceptable models are obtained for the

entire region and this complicates the

geological interpretation of geophysical

investigations. New developed

methodologies are capable of selecting

one model among all acceptable ones,

satisfying different criteria of smoothness

in the explored space of solutions.
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(1) Local Smoothness Optimization (LSO): The

optimized local solution is the one that is searched

for, cell by cell, considering only the neighbours of

the selected cell and fixing the solution as the one

which minimizes the norm between such neighbours.

(2) Global Flatness Optimization (GFO): The

optimized global solution with respect to the flatness

criterion is the one with minimum global norm in-
between the set G(�).

(3) Global Smoothness Optimization (GSO): The

optimized global solution with respect to the

smoothness criterion is the one with minimum norm
among all the members of the set �(�).

The GSO is based on the idea of close neighbours

(local smoothness) extended, in a way, to the whole

study domain. The method consists of two general
steps. The first step extracts a suitable subset �(�)
from G(�) namely the global combination u belongs to

�(�) if and only if

|u i, j  u i ±1, j ± 1 | = min         ( |u i, j   u |).

In other words �(�) contains all global combinations

with close neighbouring components. Then we select
as the best solution in G(�) with respect to the

smoothness criteria, the member of �(�) with least

global norm, or we apply the flatness criteria to  �(�)
and not to the entire G (�).
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The cellular models
of the lithosphere-

asthenosphere
system in the Italian

region
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Large

numbers: VS

solution

choosen by

LSO

Small

numbers: VS

ranges

Rectangles:

thickness

ranges
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numbers: VS

solution

choosen by

LSO

Dashed

areas:

thickness

ranges

Solutions obtained by GFO, constraining solutions that are

common to LSO and GSO
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The lithosphere-
asthenosphere system
in the Mediterranean

region

3D model of

Vrancea

(Raykova and Panza, PEPI 2006)
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splash of mantle: volcanoes
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P l i o -

Q u a t e r n a r y

m a g m a t i c

provinces in

Italy.

Modified after

Peccerillo and

Panza (1999)

Cartoon showing the three-dimensional

geodynamic scheme of the Tyrrhenian basin

and bordering volcanic areas, including the

subduction of the Ionian-Adria lithosphere in

the southern Tyrrhenian sea.



28

Mt. Vesuvius cone

(a) Hedgehog solutions (lines) from the average Rayleigh wave group velocity dispersion curve computed, in

the period range 0.3-2 s, for all stations on Mt. Vesuvius cone (BAF, BKN, BKS, BKE, SGV), and regional

group (T=10-35s) and phase (25-100s) velocities.

(b) The chosen Vs models are shown along SE-NW-SW-NE cross-sections through Somma-Vesuvius. The

grey bands indicate the boundaries between layers, that can well be transition zones in their own right, and the

group of numbers indicate the ranges for V
S
 in km/s.

(c) Uppermost part of the chosen model, if we impose, as a priori information, the value of 1.0km/s (Auger et

al., 2003), for the low velocity layer at 8km of depths (this ultralow-velocity layer is present in all solutions).

a)
b)

c)

 

Schematic model of

the crust and

uppermost mantle at

Mt. Vesuvius. The

possible ranges of Vs

are given in the

figure while the

uncertainty (about 1-

2 km) of the

thickness for each

layer is omitted for

clarity reasons. The

Moho depth (M) is

shown as dashed

line.
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Some special cases

The use of seismicity to

identify Moho
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Cellular Vs structures and

related logE-h distribution

of earthquakes, obtained

grouping hypocentres in 4-

km intervals. The average

Vs (km s-1) and its range

of variability are printed on

each layer and a hatched

zone outlines the range of

variability of their

thicknesses. Hypocentres

with magnitude type

specified are denoted by

red dots. Hypocentres with

magnitude � 2.5, but of

unspecified magnitude

type, are denoted by

purple circles. Normalized

logE is shown in the right

hand graph for each cell,

the normalizing value

logEmax is given on the

horizontal axis.

Filled red bars histogram: energy of all earthquakes from the revised ISC (2007) catalogue.
Black line histogram: the energy of earthquakes for which the depth is not fixed a priori in ISC
(2007). The location of each cell is shown superimposed to the structural and kinematic sketch
of Italy and surrounding areas (Meletti et al., 2000).
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In general earthquakes are limited to the crust, but in

several cells significant seismicity is observed in the

uppermost upper mantle. Particularly relevant the

situation in the Etna area. The earthquakes in South-

eastern Sicily, named unequivocally tectonic or rather

determined only by the release of tension associated

with plate-tectonics, are also generated by local

movements of the mantle from which the volcanic

phenomena observed depend. These movements,

which happen when the tensional state of crust

varies substantially, may determine the fragile

deformation of the latter and therefore may trigger

earthquakes, even with notable energy.
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The end


