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Abstract The non-linear inversion of geophysical data in general does not yield
a unique solution, but a single model representing the investigated field, and is
preferred for an easy geological interpretation of observations.

The analyzed region is constituted by a number of sub-regions where multi-
valued non-linear inversion is applied, which leads to a multi-valued solution.
Therefore, combining the values of the solution in each sub-region, many accept-
able models are obtained for the entire region and this complicates the geological
interpretation of geophysical investigations.

In this paper new methodologies are presented, capable of selecting one model
among all acceptable ones, that satisfies different criteria of smoothness in the ex-
plored space of solutions. In this work we focus on the non-linear inversion of
surface wave dispersion curves, which gives structural models of shear-wave ve-
locity versus depth.
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1 Introduction

We consider a problem, which arises from the inversion of surface waves
dispersion data: the construction of a three-dimensional velocity model in a
certain domain ! (e.g., Panza et al., 2007). The domain ! is covered by an
ε-set, i.e., ! is divided into many four-sided polygons δi j (cells). Using well-
established methods (Valyus et al., 1969; Valyus, 1972; Knopoff, 1972; Panza,
1981), the inverse problem is solved in each cell. Due to the non-linearity of
the problem, the solution is a set of equally probable models. Our purpose is to
provide an objective formally-defined method for the selection of one model
for each cell.

In the early fourteenth century William of Occam wrote “it is vain to do
with more what can be done with less” (see Russell, 1946, ch.14). What has
become known as Occam’s razor has also become fundamental in modern
science, i.e., hypotheses should be neither unnecessarily complicated nor un-
necessarily numerous. One motivation for seeking smooth global models is
that we want to avoid the introduction of heterogeneities that can eventually
arise from a subjective choice. In fact some of the models obtained in each cell
could be solutions only for the mathematical model, with little relation to the
geophysical problem under study. Furthermore, as discussed in some detail in
Sect. 3, the presence of a lateral boundary condition, in velocity-wave equa-
tions when a three-dimensional velocity model is constructed for all!, starting
from the cellular-shaped models, is not consistent with the basic theoretical
assumption, i.e., the infinite lateral extension of the model’s layers. Hence the
choice of the smoothest solution is needed to keep the final result as close
as possible to the conditions of validity of the used surface wave propagation
theory.

2 The origin of the problem

The problem arises from the following inversion scheme used to determine the
shear-wave velocity vertical cross-section from surface wave dispersion data.
The inversion is an optimized Monte Carlo method that combines different
trial-and-error techniques, searching for models that fit the observational data
among a very large set of predetermined possible Earth models. For instance,
if we invert a structure consisting of 10 parameters, with 4 possible different
values each, then the number of models to be explored is 410, that is 1,048,576.
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In such a method the unknown structural Earth model is replaced by a set of
parameters, and the determination of the model is reduced to the determination
of the numerical values of the parameters. The entire studied domain ! is
divided into a ε-set of cells δi j (in our case we use 1◦ × 1◦ cells) and for each
of them a structural cross-section has to be chosen among the solutions of the
inversion, that are determined as follows.

For each cross-section, theoretical dispersion quantities (phase and group
velocity of surface waves) are computed and compared with real data; the
discrepancy among the computed data and the observed ones is calculated.
The set of cross-sections for which the discrepancy is sufficiently small, with
respect to a threshold defined on the basis of the quality of data, is the solution
of the problem. The random-deterministic search is called “hedgehog” (Valyus
et al., 1969; Valyus, 1972; Knopoff, 1972).

To solve the inverse problem, the structural model has to be replaced by a
finite number of numerical parameters. In the elastic approximation, the un-
known Earth model is divided into a stack of homogeneous isotropic layers.
Each layer is defined by some approximated physical functions: shear-wave
velocity (independent parameter), compressional-wave velocity (dependent
parameter), density (fixed parameter) and the thickness of the layer (inde-
pendent parameter). The range of variability of the independent parameters
is fixed according to independent geophysical information. The estimation of
the resolving power for the data is very helpful to define the parameterization
(Knopoff and Panza, 1977; Panza, 1981).

One cross-section is chosen as a solution of the inversion problem as fol-
lows. For each structural model, selected in the model space, surface wave
dispersion curves are calculated and the differences between the computed
and the experimental dispersion curves are calculated too. The model is ac-
cepted if, at each given period, such differences are less than the measurement
error, and the r.m.s. of all the differences is less than an a priori chosen (fixed)
quantity (Panza, 1981), usually a large fraction of the average measurement
errors.

Since the hedgehog is a non-linear procedure, the inversion is multi-valued,
i.e., a set of equally probable models is accepted. Therefore, an ensemble of
acceptable models, compatible with the dispersion data, is found and in order
to summarize and define the geological meaning of the results, it is often
necessary to identify a representative model.

There are two typical approaches: the first one consists of choosing the
‘Median Model’ of all the solutions (Shapiro and Ritzwoller, 2002) as the
representative one; the second approach chooses the model characterized by
the minimum r.m.s. As an alternative, among all the solutions, it is possible
to select the one whose r.m.s for phase and group velocities is the closest to
the average r.m.s. calculated for all the solutions. In such a way it is possible
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to reduce the projection of possible systematic errors (Panza, 1981) into the
structural model. Some more objective methods in choosing a representative
model have been developed and are illustrated in Sects. 5 and 6.

3 The motivation to solve the problem

The necessity for the development of a smoothing method comes intrinsically
from the nature of the problem. The inversion problem, due to its intrinsic non-
uniqueness, provides more than one solution per cell, and all these solutions
are equally valuable. On the other hand we prefer to have only one solution
per cell, with the indication of its uncertainties, for the construction of a shear
wave velocity model, for all the study area, that can be readily interpreted in
geological terms.

There are two reasons for the development of our criteria for the selection
of a unique solution in each cell – a physical and a mathematical one.

The physical reason is that we want to avoid as much as possible the intro-
duction of artificial discontinuities (jumps, or steps) in shear wave velocities
at the border between neighbouring cells. These discontinuities arise because
the model is developed within a separate cell but, in general, there is no geo-
logical reason to obtain abrupt changes of shear wave velocities at two sides
of the border between cells, unless differently specified by independent data.
In this case the presence of abrupt discontinuities can be prescribed to the
optimization process.

By “neighbouring cells” we mean those with a side in common, as is shown
in Fig. 1.

ui ,j-1

ui-1,j ui,j ui+1,j

ui ,j+1

Fig. 1 Representation of one of the solutions in cell δi j (ui, j ) and its neighbours

The mathematical reason addresses a problem that is posed by the boundary
conditions, used in the hedgehog method. Hedgehog, like most of the other
effective inversion procedures, produces a one-dimensional model, i.e., a later-
ally infinite and homogeneous layered model. When two cells are put in welded
contact we introduce a vertical boundary between them which, in principle,
changes the boundary conditions and therefore the validity of the inversion,
i.e., the infinite lateral extension of the model’s layers. Hence the choice of the
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smoothest solution is needed to keep the final result as close as possible to the
inversion validity conditions.

As the cells can be squares with a side of hundreds of kilometers, the con-
stant values for phase and group velocities, in each cell, are approximated.
The grid itself is an object introduced independently from the physical prop-
erties of the Earth’s interior. Let us fix a point A within the studied region and
let A share a cell S (and the phase/group velocity vector α) with point B, as
shown in Fig. 2. Let point C belong to the neighbouring cell S+1 and have
phase/group velocity vector β #= α. If the grid is shifted so that, in the new
position, points A and C are in the same cell S+1, and only point B belongs
to cell S, the new phase/group velocity vectors, computed in S and S + 1, will
be α1 and β1, respectively. In general α #= β1 and therefore the migration of
point A to the neighbouring cell changes the values of physical quantities as
phase/group velocity. This simple example demonstrates the dependence of
the inversion results on the grid position; therefore it is necessary to look for
some stability of the inversion results with respect to shifts of the grid. The
phase/group velocity values, before and after the shifting of the grid, in a given
point must be as close as possible; in other words, neighbouring solutions of
the inverse problem must be as close as possible to each other. That is why it is
reasonable to use an intrinsically smoothing technique when choosing among
the different solutions of the inverse problem.

S S+1 S S+1

B A    C B   A C

        a                                       b

Fig. 2 Points A, B and C before (a) and after (b) shifting of the grid

Another good reason for smoothing the inversion solution is concealed in the
mathematical model used for representation of wave propagation through solid
media. In the considered models, the Earth’s interior – usually crust and upper
mantle – are approximated with multi-layered media. The multi-layered media
consist of infinite layers, parallel to the Earth’s surface. Therefore, the boundary
conditions used in the system of partial differential equations, describing wave
propagation through the layers, correspond to the ones for infinite domain
in a horizontal direction. This modeling is rigorously accurate if only one
(unbounded) cell is considered. In the case of neighbouring cells, artificial
lateral boundary conditions are introduced and the modeling is not exact for
a multi-cell region. The severity of this problem increases with increasing
mismatch of the boundary conditions, due to the comparison principle for
systems of elliptic partial differential equations.
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The methods developed in this article allow us to select, in each cell, the
model-solution that best satisfies bothphysical and mathematical requirements.

4 Definitions

Hereafter we assume that the study domain ! is covered by a rectangular-
shaped grid GN M with N rows and M columns. In terms of mathematics GN M

is a N × M matrix, so we use both “grid” and “matrix” to indicate the same
object. Each cell of the grid is named δi j (i = 1 . . . N, j = 1 . . . M). In the case
that ! is odd-shaped, for convenience, we keep the same notation convention
and allow for empty cells. Let n be the dimension of the vectors, describing
the solutions associated with the cells, or the number of layers in the model
example. The following notations and definitions are employed.

Definition Let w, v ∈ Rn be solutions of the inverse problem in two neigh-
bouring cells. The distance between w and v , or the divergence of w and v , is
the standard Euclidean norm ||w − v|| =

(∑n
i=1 (wi − vi)

2
)1/2

where wi and
vi are the components of w and v , respectively.

Definition Let δi, j be a cell from the !-covering grid. By uk
i, j we denote the kth

solution of the inverse problem in the cell δi, j . The notation ui, j is used when
ui, j belongs to the set of the solutions in the cell δi, j , since the order number
of the solution is not important for our purposes.

Definition (Global combination) The set u = {ui, j : i = 1 . . . N, j =
1 . . . M} is called global combination. In other words, we choose one solution
in each cell and compose u as the union of these selections. The set of all global
combinations is denoted by (G!).

Definition (Row combination) The set u(I) = {uI, j : j = 1 . . . M} (u(J ) =
{ui,J : i = 1 . . . N }) is called row combination and is denoted by u(I) (u(J )
for column-combination), i.e., row combination is constructed by selecting
one solution in each cell belonging to the row I (column J ).

Obviously u =
N⋃

I=1
u(I) =

M⋃
J=1

u(J ).

Definition (Local combination) The set

ul(i, j ) = {
ui, j , ui, j+1, ui, j−1, ui+1, j , ui−1, j : i = 1 . . . N, j = 1 . . . M

}

is called local combination. We select one solution of the cell δi, j together with
its neighbours and we compose ul as the union of these.

Let F : ! ⊗ ! ⊗ G(!) → R be the divergence-measuring function
defined by F(x , y, u) = ||ui, j − um,k || : x ∈ δi, j , y ∈ δm,k for δi, j and δm,k

neighbouring cells and F(x , y, u) = 0 otherwise.
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Definition Let u ∈ G(!). Then the global norm of u in ! is defined by
||u|| = c

∫

!⊗!

F(x , y, u)dxdy, where c is a constant. In fact c = µ. ι, where

µ is the measure, or the area of a cell, and ι is the number of borders between
cells, with the exclusion of the boundary of !.

Obviously ||u|| =
N−1∑
i=1

M−1∑
j=1

(∣∣∣∣ui, j − ui, j+1
∣∣∣∣ +

[∣∣∣∣ui, j − ui+1, j

∣∣∣∣]) ∣∣ .

Analogously the row norm is defined as

||u(I) − u(I + 1)|| =
M−1∑

j=1

(∣∣∣∣uI, j − uI i, j+1
∣∣∣∣ +

∣∣∣∣ui, j − ui+1, j

∣∣∣∣

+
∣∣∣∣uI+1, j − uI+1, j+1

∣∣∣∣) +
∣∣∣∣uI,M − uI+1,M

∣∣∣∣

5 Criteria

One of the most important steps for optimization is the choice of criterion for
optimality.The first question is which normshouldbe used for the measurement
of roughness of the global solution?

The standard Euclidean norm in Rn is used to measure the divergence of
two neighbouring vectors. Furthermore, the Euclidean norm with weights can
be implemented for more flexibility of the method with respect to some a priori
knowledge about the physical features of the study area. A combination u is
measured by its global norm.

The second important question is what do we mean by optimal solution?
The optimal combination has to include solutions with as small as possible

norm. In other words, the chosen solutions in two neighbouring cells have to
be the closest of all. The obvious extension is to consider just a cell and its
neighbours. Then as the best selection we adopt the one with minimal total
cumulative divergence between any neighbouring cells.

Considering the whole study area, the problem of optimality becomes more
complicated. Three quite different criteria have been developed, all aimed at
the minimization of the lateral velocity gradient for the whole domain, or, in
other words, the shape of the global solution in all ! is as smooth as possible.
The definitions of the criteria are as follows.

(1) Local Smoothness Optimization (LSO): The optimized local solution of
the inverse problem is the one that is searched for, cell by cell, considering
only the neighbours of the selected cell and fixing the solution as the one
which minimizes the norm between such neighbours.

(2) Global Flatness Optimization (GFO): The optimized global solution of
the inverse problem with respect to the flatness criterion is the one with
minimum global norm in-between the set G(!).
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(3) Global Smoothness Optimization (GSO): The optimized global solution
of the inverse problem with respect to the smoothness criterion is the one
with minimum norm in-between all the members of the set '(!).
The GSO is based on the idea of close neighbours (local smoothness)
extended, in a way, to the whole study domain. The method consists of
two general steps. The first step extracts a suitable subset '(!) from
G(!), namely the global combination u belongs to '(!) if and only if
|ui, j − ui±1, j±1| = min

ũ∈δi±1, j±1

(|ui, j − ũ|). In other words '(!) contains all

global combinations with close neighbouring components. Then we select
as the best solution in G(!), with respect to the smoothness criteria, the
member of '(!) with least global norm, or we apply the flatness criteria
to '(!) and not to the entire G(!).

6 The algorithms

Both GFO and GSO consider an entire row or column in a step. The description
of the algorithms and proofs of some of their features are given for rows only
but are valid for columns as well.

6.1 Global flatness optimization

The GFO algorithm is based on the well-known dynamic programming method
(DP method) (Bryson and Ho, 1975). The main obstacle we face is that the
domain ! is two-dimensional, while the DP method is applicable to a one-
dimensional sequence of cells. This encumbrance is removed by considering
a column of cells. In this way the problem of optimizing ! is equivalent to the
problem of optimizing a one-dimensional set of columns (see theorem A.1 in
Appendix A).

For the description of the algorithm we use lower indexes to indicate the
number of the combination in the set of all combinations in the correspondent
row.

Step 1. For every combination uλ(2) of the second row we find the combi-
nation uµ(1) closest to it, i.e., norm(λ, 2) = ||uλ(2) − uµ(1)|| =
min

η
(||uλ(2) − uη(1)||). We record the norm of uλ(2) and uµ(1), as

well as the number µ of the combination uµ(1). Therefore at the end
of Step 1 we have associated each combination from row 2 with the
number of the combination, closest to it, from row 1, and the distance
between them.

Step 2. For every combination uλ(3) of the third row we find the combination
uµ(2) from the second one such that norm (λ,3) = ||uλ(3)−uµ(2)|| =
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min
η

(||uλ(3) − uη(2)|| + norm(η, 2)). We record the norm (λ, 3) as

well as the number µ. Therefore we have associated each combination
uλ(3) from row 3 with the number of a combination from row 2 such

that the cost
3∑

i=2
||uλi (i) − uµi (i − 1)|| to reach the left-hand end of

the study area, starting from uλ(3) and going to the left, is minimal.
By induction we repeat the same procedure for all the rows. For every
combination uλ(k) of the k−th row we find the combination uµ(k − 1)
such that norm (λ,k) = ||uλ(k)−uµ(k−1)|| = min

η
(||uλ(k)−uη(k−

1)||+norm(η, k−1)). We record the norm (λ, k) as well as the number
µ. Hence we have associated each combinationuλ(k) from row k with
the number of the combination from row k − 1 such that the cost

k∑
i=2

||uλi (i) − uµi (i − 1)|| to reach the left-hand end of the study area,

starting from uλ(k) and going to the left, is minimal.
Step 3. Among all combinations from the last row we choose the one with min-

imal norm (λ, N), say u*(N), i.e., norm (*,N)=min
η

( norm(η, N −1)).

Then u*(N) is a member of the flattest global solution u and actually
the norm (λ,N) is the norm of u. The other members of u can be easily
restored as follows. Since we keep a record for the number µ of the
row combinationuµ(N −1) in the previous row for which norm (*,N)
is derived, we can restore the members of uµ(N −1) by their number.
Applying the same procedure backward we can find the members of
u in all rows. The way GFO moves in space is shown in Fig. 3.

                             Step 1:                                                 Step 2: 

↑ ↑ ↑ ↑

↑ ↑ ↑ ↑

Fig. 3 The way GFO algorithm moves in the cellular space. The solutions in cells coloured
in grey are those still to be chosen, while in white cells the solutions are not yet chosen. The
cells coloured in raster are those where choice is in progress. For each combination of the row
where the computation is in progress, the algorithm searches for the closest combination from
the neighbouring grey row (indicated by arrows)
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6.2 Global smoothness optimization

The GSO combines the construction of the already defined set '(!) with the
search for the member of '(!) with the minimal global norm.

For simplicity of description we choose the first row as the initial one
(I = 1), but the result of optimization is independent from the choice of the
starting cell. Upper indexes are used to indicate the number of the combination
in the set of all combinations in the correspondent row.

Step 1. We fix a combination in the initial row, for instance u f (1). From all
combinations from the second row we choose the one with the minimal
norm with respect to u f (1), i.e., we find the combination u f (2) such
that ||uf(1)−uf(2)|| = min

∀u(2)
|| uf(1) − u(2)||) and fix it as a temporary

solution for the second row.
Step 2. We repeat the procedure for u f (2). By induction, for the k−th row

from all combinations from the k+1−st row, we choose the one with
the minimal norm with respect to the fixed combination in the k−th one,
i.e., we find the combination u f (k) such that ||uf(k) − uf(k + 1)|| =
min∀u(k+1)(||uf(k) − u(k + 1) ||) and fix it. In this way we assure that
the row k +1 is occupied by the closest combination to the one in row
k.

Step 3. In an improved variant of GSO (IGSO), developed to make it indepen-
dent of the direction of movement across the cells, an additional step
is considered. For each row k we repeat steps 1 and 2, starting from
row k with initial combination u f (k) and applying the procedure in
the reverse direction, i.e., from row k to row 1.

Step 4. We construct the global combination u f as a composition of all u f (k),
for k = 1 . . . N and we obtain the smoothest combination with fixed
initial row combination.

Step 5. We apply steps 3 and 4 to all the combinations of the initial row and
we obtain a set '(!) of smooth combinations. As the smoothest of
all combinations in '(!) we adopt the one with minimal global norm
(see Theorem 2 in Appendix A).

The way the smoothingalgorithm moves in the cell space is shown in Fig. 4.

6.3 Local smoothness optimization

LSO depends strongly on the choice of the starting cell (SC). In the case of the
absence of any a priori constrain, this choice can be made either arbitrarily (in
a random way), or by using the following objective criterion.
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                   Step 1:                                                                 Step 2: 

Initial: fixed 
combination ↓ ↓ ↓ Initial: fixed 

combination
Fixed 
combination ↓ ↓ ↓ ↓

Fig. 4 The way smoothing algorithm GSO moves in the cell space. The solutions in grey
cells are those still to be chosen, while the solutions in white cells are already processed. For
each combination of the row where computation is in progress, the algorithm finds the closest
combination of solutions from the neighbouring grey row (indicated by arrows)

First of all it is important to find one discriminator, i.e., a parameter, which
characterizes each cell and allows us to select the initial one. This is done in
the following Step 1.

Step 1. Given two solutions retrieved for the same cell, we calculate their
relative distance as the Euclidean norm of the difference between their
vectors, i.e., if v1 and v2 are the vectors representing two different
solutions, the distance between them is:

d = || →
v 1 − →

v 2 =

√√√√
n∑

k=1

[vik − v2k]2

In each cell δi j the distance between any possible couple of solutions
is calculated. The cell δi j is characterized by the average d̃i j of all
these distances. Therefore, d̃i j is the discriminator, which gives an
estimation of the density of the solutions in the parameter space, i.e.,
of the stability of the solutions.
Finally, we choose as SC the cell with the minimum d̃i j , since this
means that inside such a cell the solutions are the densest in the pa-
rameter space, i.e., the potential systematic bias introduced by the
choice is minimized.

Step 2. This step is applied, cell by cell, starting from the SC.
For cell δi, j we find the local combination ul such that:

normi, j = min
k

(∣∣∣∣uk
i, j − ui, j−1

∣∣∣∣ +
∣∣∣∣uk

i, j − ui, j+1
∣∣∣∣

+
∣∣∣∣uk

i, j − ui−1, j

∣∣∣∣ +
∣∣∣∣uk

i, j − ui+1, j

∣∣∣∣)

and we fix the solution uk
i, j for the cell δi, j .
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Once a solution is chosen in the current cell, we keep it fixed and
continue by applying the procedure to one of its neighbours (δi±1, j or
δi, j±1). The next cell is the one with the minimum d̃ between d̃i±1, j

and d̃i, j±1. This means that the local optimization follows, in the pro-
gressive choice of solutionsuk

i, j , the direction of “maximum stability”,
as described in Step 1.

7 Estimates of the speed of the methods

The number of computations required for the GFO method can be computed

by the formula c =
N−1∑
k=1

c(k) · c(k + 1), where c is the number of norms to be

computed and c(k) is the number of combinations of vectors in row k. The

correspondent formula for GSO is c = c(1) · (
N−1∑
k=1

c(k + 1)). As for LSO, only

a rough estimation of speed can be given by the formula c = (4n − 1)c̃ where
c̃ is the average number of solutions per cell and n is the number of cells.
The real number of computations depends strongly on the initial cell and the
direction of the choice for the next cell.

8 Applications to the Alps

The methods of optimization described are applied to the study of the Alpine
region, a very complex and intensively studied (e.g., Panza and Muller 1979;
Dal Piaz et al., 2003 and references therein; Lippitsch et al., 2003 and references
therein) tectonic feature. The region is covered by a set of cells with a dimension
of one degree, as is shown in Fig. 5. A set of solutionshas been obtained in each
cell by hedgehog inversion (Farina, 2006). Hereafter we adopt the convention
in Farina (2006) and Panza et al. (2007) of naming the cells as is shown in
Fig. 5.

In Table 1 the results obtained with GSO, GFO and LSO are compared. As
can be seen from Table 1, in most of the cells GSO and LSO methods choose
the same solution. Solutions differ in only 40% of cells. The norm obtained for
the GSO solution is 0.358 km/s, while 0.362 km/s is the norm of the solution
for LSO, which proves that, as we could expect, the global solution derived by
the GSO method is mathematically smoother than the one obtained by LSO,
even if, from a physical and geological point of view the two values can be
considered both equal to 0.36 km/s. As for the GFO method, the global norm
is 0.354 and, as we should expect, is considerably smaller than that of the GSO
or the LSO methods.
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Fig. 5 The region of the Alps, s.l., covered by the 1◦ × 1◦ grid, considered in the examples of
application of the three optimization methods described in this paper

Table 1 Comparison between GSO, LSO and GFO for the Alps is shown in Fig. 7. Cells which
contain zeroes are not explored. The number of solutions chosen by GSO, LSO (underlined
font) and GFO (italic font) is given in each of the cells in study. The latitude and longitude of
the center identifies each cell

g 0 0 3|3
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6|14
5

7|7
6

9|9
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10|10
9 0 0 0 0 0 0

f 0 3|3
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7|7
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4
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8|8
8
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24|24
24

1|1
1
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6

5|4
3

5|5
5

2|4
3

3|3
2 0 0 0

d 16|7
7

16|6
6

15|15
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17
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3
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7

1|2
1

3|3
3

5|9
9

1|1
6

6|11
10

10|11
12
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In cells 2e and 2d the differences are particularly relevant (Fig. 6). In the for-
mer cell, GSO and GFO give a crustal layer with Vs of about 3.90 km/s
down to a depth of 40 km, while LSO gives a crustal layer with Vs of about
3.45 km/s down to a depth of 30 km, followed by a mantle layer with Vs of
about 4.20 km/s. Similarly, in the latter cell, GFO and GSO give a crustal layer
Vs velocity of around 3.95 km/s down to a depth of 48 km, overlying a fast lid
with a Vs of around 4.80 km/s, while LSO gives a crustal layer with a Vs of
around 3.55 km/s down to a depth of 34 km that overlies a mantle layer with
Vs of about 4.50 km/s.

From a geological point of view the differences reported in Table 1 are not
severe and do not hamper the interpretation of the inversion results, since the
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Fig. 6 Comparison of the LSO, GSO and GFO solutions and their uncertainties for the mantle
layers in cells 2e and 2d. For each inverted layer the average Vs is given on top of its variation
range; thickness uncertainty is evidenced by hachures. Consistent with the penetration depth of
our data set (Panza et al. 2007), the value of Vs at a depth greater than about 250 km is fixed
and common to all cells. The uncertainties for crustal layers are omitted for drawing clarity, but
they can be inferred from Appendix B

results obtained with the three methods are mostly consistent with independent
data. The ambiguous cases can be sorted out using independent information
like available Moho maps. With LSO and GSO, only in 12% of cells was the
Moho depth found tobe significantly different from the one given in existing
Moho maps (Dezes et Ziegler, 2001). This percentage rises to 18% for GFO,
because the GFO method provides the best solutions, in the sense of global
smoothness, and globally forces the flattening of the solutions for the whole
depth range under study, and this may not correspond to local features of the
crust. Therefore, for the optimal exploitation of the available methods, we can
combine the best features of all three methods in the following way. We choose
as a base the solutions from GFO. Then we compare them with independent
consolidated information, like Moho maps, and substitute the solutions, in the
cells where the Moho map differs significantly from the GFO solution, with
the ones from LSO or GSO that best match the Moho map. For example, in
cells 2d and 2e, GSO and GFO give a Moho depth of about 45 km, despite
the value of approximately 34 km deep Moho reported in the considered map,
while LSO solution has a Moho depth of about 30 km. Therefore it is natural
to prefer, for these cells, the LSO solution.

Detailed analysis of the entire study region reveals relevant mismatching
between the GFO solution and Moho maps in the cells 5e, 3f, –4e, and 2d. All
these cells are at the border of the study region which suggests that flattening
(GFO) may suffer from some border effects. Therefore, it is reasonable to
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Fig. 7 GFOf model. Result of GFO optimization for the Alps, considering the available independent information about Moho depth in cells 5e, 3f,−4e,
2d, 5d and 2e. For each inverted layer the average Vs is given on top of its variation range; thickness uncertainty is evidenced by hachures. The value of Vs
at a depth greater than about 250 km is fixed and common to all cells. Vs values are omitted in all layers for clarity of drawing, but are given in appendix B
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fix the solutions which are common to the three methods, and to accept the
solutions given by GSO (and LSO as they coincide) in cells 5e, 3f, –4e, and
that given by LSO in cell 2d. With fixed solutions in these cells, we re-run the
GFO optimization method, which now requires much less CPU time. If we
call GFOf the solution obtained by GFO, with fixed solutions in the cells –4e,
5e, 3f, 2d, the GFOf solution differs from that of the GFO in two additional
cells –5d and 2e, where the GFOf models are acceptable with respect to the
mapped Moho depth. The velocity structures for all the study area obtained
with the GFOf solution are shown in Fig. 7.

The norm of GFOf solution (0.355 km/s) is obviously slightly bigger than
that of the GFO (0.352 km/s).

The general picture in Fig. 7 is consistent with the Vs models formulated
so far (Panza and Muller, 1979; Farina 2006; Farafonova et al., 2007) and with
known main features. The Vs -depth profile in the Western Alps (cells −4e
and −4d) agrees with the presence of lithospheric roots (Panza and Muller,
1979); similarly for the Eastern Alps (cell 2f). In the Appennines (cells 0d and
1d) a low velocity mantle layer with a Vs of about 4.15 km/s and 30 km thick,
just below the Moho overlies a high velocity lid with a Vs of about 4.80 km/s,
consistent with the identification of a “mantle wedge” (Panza et al., 2003). In
the north Adriatic and surroundings, the upwelling asthenosphere well depicts
the bending of the Adriatic plate beneath Appennins and Dinaridies (Doglioni
and Flores, 1997).

Figure 8 shows how fixed solutions affect the solution in neighbouring
cells. In cell 2e a crust, thinner than the one given by GFO in Fig. 6, is forced
by fixing a relatively thinner crust in cell 2d. In cell 5d the GFOf solution
identifies a low velocity layer at a depth in the range of 150–210 km, which is

Fig. 8 Fixed solutions affect the solution in neighbouring cells
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consistent with the bending of the Adriatic plate beneath Dinaridies. Vs values
are omitted in crustal layers for clarity of drawing, but are given in Appendix B.

9 Conclusions

In this paper we describe a new approach to the decision-making problem for
non-linear inversion, and three different ways to implement this approach are
given.

The distinction between smoothness and flatness approaches is theoretical
and hence GSO and GFO vary in algorithms. In the flatness approach (GFO)
we consider all global combinations in the study domain ! and the optimal
global solution is that with the minimal global norm; in the smoothness ap-
proach (GSO) we consider only the global combinations with close solutions in
neighbouring cells, and choose the solution with minimal global norm among
them, i.e., we apply the flatness criteria to the subset of all combinations,
containing only smooth combinations. The LSO method is in fact the imple-
mentation of the smoothness approach to a local level, i.e., considering the
smoothness of the solution in a cell and a neighbouring one, unlike the GSO
method that considers rows of cells.

Other main differences among the discussed methods are due to the CPU
time necessary for the computations, and the dependence of the final results
on the initial point (cell or row) and the search direction in space.

Considering the global methods, GFO has the same computational speed
as GSO for rectangular domains with equal number of vectors in each cell. In
practice GFO is in general much slower then GSO, due to the fact that for most
of the applications the number of vectors is not the same in each cell. On the
other hand GFO has the advantage of being independent from the starting row
and on the search direction in space.

Reducing the number of solutions in each cell, for instance choosing “k”
solutions with r.m.s closest to the average one, increases the computational
speed of the GFO method.

LSO is by far the quickest method among the discussed ones, though
strongly dependent on the choice of the SC and on the search direction in
space and the global norm of the solution, obtained by LSO, is usually bigger
than that obtained by some of the global methods (GSO and GFO).

The choice of the most suitable procedure cannot be made on the basis
of a general rule but must be adjusted to the particular problem at hand, thus
exploiting, in the best possible way, the formalized flexibility of the three
approaches. When the three methods give significantly different results, the
choice can be aided by the use of independent data sets, like for instance
body-wave tomography models, Moho maps and gravity data, allows us to
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retrieve, with a non-linear scheme, a unique solution, within the pre-assigned
parameter’s space.

From a geophysical point of view the three methods are quite consistent
among each other and with independent data sets; nevertheless GFO with
some fixed solutions from LSO (GFOf) better describes some local features,
thus providing a reliable model of the study area.

Acknowledgement. The authors would like to acknowledge The Italian Programma Nazionale
di Ricerche in Antartide (PNRA), project 2004/2.7–2.8 (“Sismologia a banda larga nella re-
gione del Mare di Scotia e suo utilizzo per lo studio della geodinamica della litosfera”); ASI
Agenzia Spaziale Italiana (Italian Space Agency); Consorzio per lo Sviluppo Internazionale
dellUniversità di Trieste and CEI Research Fellowship at ICTP Abdus Salam (International
Centre for Theoretical Physics), Trieste

A Appendix

Theorem A.1 The combination obtained by GFO (DP method) is that with minimal global
norm.

The proof of this theorem follows immediately from the definition of the GFO method.
The key point is that all combinations of solutions in two neighbouring rows are checked and,
for each combination of the current row, the cost (the norm) from this row to the initial one is
saved.

Actually, the contribution of theorem 1 to the classical DP is the extension of DP to 2-
D. Roughly speaking, the classical DP method deals with problems of Linear Optimization,
namely the Transport Problem, and as such is 1-D. Applying the classical DP to the sets of all
combinations for any column we obtain a 2-D method.

The following lemmas proved in this chapter apply to the GSO criterion. Let us denote by
un the minimum solution obtained by starting the combination with the initial row with number
n. Hereafter we do not distinguish the combination and its number. By un(t) we denote the value
of the solution un in row t, i.e., the combination in row t, included in un.

Lemma A.1 Let I and S be two combinations of the initial row, If uI ∩ u S #= ∅ and uI (S′) =
u S(S′) for some S′ then uI (t) = u S(t) for all t( S’).

The lemma is illustrated in Fig. A1.
Proof of the lemma: Let us first consider the case u I (S′) = u S(S′), u I (t) > u S(t) for t < S′

and u I (t) < u S(t) for t > S′ (Fig. A2). Then the function (combination)

u S =
{

uS(t) for t ≤ S′
uI(t) for t ≥ S′

has a norm which is then that of function u I , i.e., ||u S|| < ||uI || (because u I (t) > u S(t) >
u S(t) for t > S′). So, by definition, u I is not the global minimum solution – uS has smaller
global norm. This contradiction proves the lemma.

If uI and uS have more then one common point, i.e., uI ∩ uS = {S, S” . . . S(n)}, then
the proof of the lemma is an obvious variant of the proof given for one intersecting point. The
function u S is constructed as shown in Fig. A3.
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Figs. A1, A2 and A3 Graphical representations of the cases of behaviour of the values of
solutions covered by lemma

usus

uI

Fig. A4 Graphical representation of the smoothest solution us and a pretender uI

Let u I > u S and uS(I) = c(S,I) be the combination in row I , included in the solution
u S . Let us consider the global solution uc(S,I ) (Fig. A4). If uc(S,I)(t0) = uS(t0) for some
t0, then by the lemma uc(S,I)(t) = uS(t) for any t≥t0 . Since uc(S,I)(t) ≤ uS(t) for t < t0

then uc(S,I) ≤ uS as
∣∣∣
∣∣∣uc(S,I)(I) − uc(S,I)(I + 1)

∣∣∣
∣∣∣ ≤

∣∣∣∣uS(I) − uS(I + 1)
∣∣∣∣. Therefore uI >

uS > uc(S,I) so from the definition of uI as the minimum solution with initial column I,
we immediately obtain uc(S,I) ≡ u I . Therefore the solution obtained by the smoothing-based
method is really the optimal one.

A direct consequence of the lemma is the following theorem.

Theorem A.2 GSO splits G(!) on bundles B(I) =
{
uα : uα1 (I) = uα2(I)

}
.

In other words B(I) consists of the minimal combinations with the same value for row I (and
from the lemma – for any row J > I). Theorem 2 is the basis of the following improvement of
GSO.

Let us fix I∈(1, N) and let u I
L be the combination of rows 1,2,…I, i.e., u I

L = {ui, j : i =
1, . . . I, j = 1, . . . M}, obtained by GSO starting at row 1. Let u I

R be the combination of rows
1,2,…I , i.e., u I

R = {ui, j : i = 1, . . . I, j = 1, . . . M}, obtained by GSO starting at combination
u I

L (I) of row I , i.e., u I
L(I) = u I

R(I).
Let us suppose that we have computed u I

L . Since u I
L(I) = u I

R(I), by theorem 2 we have

u I+ j
L (I + j) = u I+ j

R (I + j) for j=1,…M-I. Therefore, if ||u I
L || > ||u I

R|| then we replace u I
L

with u I
R.

We repeat this procedure for all rows but the first, and we call the method IGSO (Improved
GSO).

The advantage of IGSO is that the algorithm proceeds in both forward and backward
directions, even if GSO moves only forward.
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Appendix B

Range of variability of the parameters H (thickness)and Vs for each layer of the chosensolution.
The inverted quantities in the table are rounded off to 0.5 km or to 0.05 km/s and we take into
account the a priori information used to constrain the inversion, therefore the chosen solution
does not necessarily fall in the center of the range that can be smaller than the step used in the
inversion.

The mechanical properties in layers for which the ranges are not given have been fixed a
priori and not inverted.

Cell –4d Cell –4e
Vs +Vs H +H Vs +Vs H +H
2.75 1.0 1.20 0.5
2.75 1.0 2.90 0.5
3.00 1.0 2.90 1.0
3.00 1.0 2.90 1.0
3.15 1.0 2.90 2.0
2.90 2.75–3.05 8.0 6.5–9.5 2.85 2.80–2.90 8.0 7.0–9.0
3.90 3.75–4.05 17.0 14.5–19.5 3.95 3.75–4.15 20.0 17.0–23.0
4.20 4.10–4.30 70.0 55.0–70.0 4.45 4.40–4.50 75.0 65.0–75.0
4.65 4.50–4.80 60.0 60.0–85.0 4.60 4.50–4.70 65.0 65.0–82.5
4.40 4.20–4.60 110.0 85.0–110.0 4.35 4.20–4.50 110.0 87.5–110.0
4.75 80.0 4.75 67.0

Cell –3d Cell –3e
Vs +Vs H +H Vs +Vs H +H
2.75 1.0 1.20 0.1
2.85 1.0 2.80 0.9
3.00 1.0 2.80 1.0
3.10 1.0 2.80 2.0
3.10 1.0 2.80 2.0
2.65 2.50–2.80 6.0 6.0–8.0 2.85 2.75–2.95 7.0 7.0–8.0
3.85 3.70–4.00 20.0 20.0–30.0 4.00 3.90–4.00 26.0 22.5–29.5
4.40 4.30–4.50 85.0 67.5–85.0 4.55 4.50–4.60 85.0 70.0–85.0
4.35 4.20–4.50 100.0 80.0–100.0 4.30 4.05–4.55 100.0 72.5–100.0
4.50 4.25–4.75 60.0 60.0–80.0 4.50 4.25–4.75 55.0 55.0–82.5
4.75 74.0 4.75 71.0
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Cell –3f Cell –2d
Vs +Vs H +H Vs +Vs H +H
2.85 1.0 2.30 1.0
3.10 1.0 2.30 1.0
3.10 1.0 2.50 1.0
3.45 1.0 2.50 1.0
3.45 1.0 2.50 2.0
2.90 2.85–2.95 9.0 7.5–10.5 3.35 3.20–3.50 10.0 8.0–12.0
3.65 3.50–3.80 18.0 14.0–22.0 4.10 3.95–4.25 29.0 24.5–33.5
4.45 4.30–4.60 60.0 47.5–60.0 4.40 4.30–4.50 80.0 65.0–80.0
4.50 4.45–4.55 110.0 90.0–110.0 4.35 4.20–4.50 100.0 80.0–100.0
4.50 4.25–4.75 110.0 90.0–110.0 4.50 4.30–4.70 70.0 70.0–90.0
4.75 38.0 4.75 55.0

Cell –2e Cell –2f
Vs +Vs H +H Vs +Vs H +H
2.43 1.0 2.85 1.0
2.43 1.0 3.10 1.0
2.43 1.0 3.45 1.0
2.90 1.0 3.45 1.0
2.90 2.0 3.45 1.0
3.15 3.05–3.25 10.0 8.0–12.0 3.05 2.90–3.20 11.0 9.0–13.0
4.00 3.90–4.10 25.0 21.0–29.0 3.85 3.75–3.95 24.0 21.0–27.0
4.45 4.35–4.55 80.0 65.0–80.0 4.60 4.45–4.75 35.0 35.0–52.5
4.35 4.20–4.50 100.0 80.0–100.0 4.30 4.15–4.45 110.0 90.0–110.0
4.40 4.20–4.60 70.0 70.0–90.0 4.50 4.25–4.75 110.0 90.0–110.0
4.75 59.0 4.75 55.0

Cell –2g Cell –1d
Vs +Vs H +H Vs +Vs H +H
2.30 0.5 2.30 1.0
2.65 0.5 2.30 1.0
2.90 1.0 2.50 1.0
3.45 2.0 2.50 1.0
3.40 2.0 2.50 2.0
3.30 3.25–3.35 13.0 11.5–14.5 3.30 3.15–3.45 10.0 7.5–12.5
4.20 4.10–4.30 30.0 30.0–40.0 4.00 3.90–4.00 28.0 24.0–28.0
4.65 4.50–4.80 30.0 30.0–45.0 4.45 4.35–4.55 85.0 70.0–85.0
4.30 4.25–4.35 100.0 80.0–100.0 4.25 4.05–4.45 70.0 70.0–87.5
4.45 4.25–4.65 110.0 90.0–110.0 4.50 4.25–4.75 110.0 90.0–110.0
4.75 61.0 4.75 41.0
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Cell –1e Cell –1f
Vs +Vs H +H Vs +Vs H +H
2.30 1.0 1.20 0.1
2.30 1.0 3.30 0.9
2.30 1.0 3.30 2.0
2.60 1.0 3.30 2.0
2.60 2.0 3.30 3.0
3.15 3.05–3.25 10.0 10.0–12.5 2.80 2.70–2.90 6.0 5.0–7.0
4.00 3.90–4.00 25.0 21.0–25.0 3.95 3.85–4.05 25.0 21.0–29.0
4.45 4.30–4.60 80.0 65.0–80.0 4.50 4.45–4.55 80.0 65.0–80.0
4.35 4.20–4.50 100.0 82.5–100.0 4.40 4.20–4.60 100.0 82.5–100.0
4.40 4.20–4.60 70.0 70.0–90.0 4.40 4.20–4.60 70.0 70.0–90.0
4.75 59.0 4.75 61.0

Cell –1g Cell 0d
Vs +Vs H +H Vs +Vs H +H
2.75 1.0 2.00 3.0
2.75 1.0 2.20 1.4
3.40 1.0 2.80 1.6
3.40 2.0 3.25 0.5
3.40 2.0 3.25 0.5
3.30 3.20–3.40 12.5 10.0–15.0 3.35 3.30–3.40 12.0 11.5–12.5
4.10 3.95–4.25 20.0 20.0–24.5 4.15 4.05–4.25 40.0 30.0–50.0
4.65 4.55–4.75 30.0 30.0–40.0 4.80 4.60–4.80 30.0 30.0–45.0
4.45 4.35–4.55 110.0 90.0–110.0 4.45 4.25–4.65 100.0 75.0–100.0
4.25 4.00–4.50 70.0 70.0–90.0 4.00 4.00–4.20 50.0 50.0–75.0
4.75 100.5 4.75 110.0

Cell 0e Cell 0f
Vs +Vs H +H Vs +Vs H +H
2.00 1.0 3.20 1.0
2.56 1.0 3.20 1.0
2.56 1.0 3.20 1.0
3.01 2.0 3.50 1.0
3.01 1.0 3.50 1.0
3.15 3.05–3.25 7.0 6.0–8.0 2.85 2.80–2.90 6.0 5.0–7.0
3.75 3.65–3.85 21.0 18.0–24.0 3.70 3.60–3.80 22.0 17.0–27.0
4.45 4.35–4.55 90.0 70.0–90.0 4.45 4.35–4.55 35.0 35.0–50.0
4.50 4.25–4.75 50.0 50.0–70.0 4.50 4.35–4.65 110.0 90.0–110.0
4.00 4.00–4.35 70.0 70.0–90.0 4.00 4.00–4.25 70.0 70.0–90.0
4.75 106.0 4.75 102.0
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Cell 0g Cell 1d
Vs +Vs H +H Vs +Vs H +H
3.40 1.0 2.00 2.0
3.40 1.0 2.15 1.0
3.40 1.0 2.15 1.4
3.50 1.0 2.80 1.6
3.50 1.0 3.25 1.0
2.85 2.70–3.00 7.5 7.5–10.0 3.40 3.35–3.45 17.0 13.0–21.0
3.75 3.60–3.90 20.0 20.0–27.0 4.15 3.95–4.35 30.0 25.0–35.0
4.45 4.30–4.60 35.0 35.0–45.0 4.80 4.65–4.80 30.0 30.0–40.0
4.45 4.30–4.60 70.0 70.0–90.0 4.35 4.15–4.55 100.0 80.0–100.0
4.35 4.20–4.50 110.0 90.0–110.0 4.00 4.00–4.20 60.0 60.0–80.0
4.75 102.5 4.75 105.0

Cell 1e Cell 1f
Vs +Vs H +H Vs +Vs H +H
2.55 3.0 1.20 0.1
2.55 1.5 3.35 0.9
3.18 1.5 3.15 1.0
3.30 0.5 3.15 1.0
3.30 0.5 3.15 1.0
3.05 2.95–3.15 4.0 4.0–5.5 3.00 2.90–3.10 8.0 6.5–9.5
3.55 3.45–3.65 21.0 17.5–24.5 3.70 3.60–3.80 25.0 21.5–28.5
4.50 4.40–4.60 80.0 60.0–80.0 4.50 4.40–4.60 75.0 60.0–75.0
4.40 4.25–4.55 70.0 70.0–90.0 4.45 4.30–4.60 65.0 65.0–82.5
4.00 4.00–4.25 60.0 60.0–82.5 4.45 4.25–4.65 70.0 70.0–90.0
4.75 107.0 4.75 103.0

Cell 1g Cell 2d
Vs +Vs H +H Vs +Vs H +H
2.70 1.0 0.00 0.4
2.70 1.0 2.00 3.6
2.70 1.0 3.30 1.0
3.00 1.0 3.30 1.0
3.00 2.0 3.50 2.0
3.55 3.45–3.65 18.0 15.0–21.0 3.30 3.20–3.40 6.0 6.0–9.0
4.00 3.85–4.00 15.0 15.0–20.0 3.55 3.35–3.75 20.0 20.0–26.0
4.45 4.35–4.55 50.0 50.0–70.0 4.50 4.35–4.65 30.0 30.0–45.0
4.40 4.20–4.60 60.0 60.0–77.5 4.45 4.25–4.65 105.0 80.0–105.0
4.25 4.00–4.50 60.0 60.0–80.0 4.00 4.00–4.20 60.0 60.0–85.0
4.75 141.0 4.75 120.0
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Cell 2e Cell 2f
Vs +Vs H +H Vs +Vs H +H
2.10 1.0 3.50 0.1
2.50 2.0 3.50 0.4
2.50 2.0 2.85 1.5
2.90 1.0 2.85 1.0
2.90 1.0 2.85 4.0
3.45 3.40–3.50 21.0 17.5–24.5 3.40 3.30–3.50 14.5 11.0–18.0
4.25 4.05–4.45 20.0 20.0–30.0 3.85 3.65–4.05 17.0 17.0–21.5
4.65 4.55–4.75 60.0 45.0–60.0 4.35 4.15–4.55 35.0 35.0–45.0
4.40 4.25–4.55 90.0 70.0–90.0 4.50 4.35–4.65 110.0 90.0–110.0
4.45 4.25–4.65 50.0 50.0–75.0 4.50 4.25–4.75 60.0 60.0–85.0
4.75 101.0 4.75 106.5

Cell 2g2 Cell 3d
Vs +Vs H +H Vs +Vs H +H
2.20 1.8 0.00 0.0
3.20 1.2 1.76 3.0
3.20 1.0 2.25 1.0
3.20 0.5 3.45 1.0
3.20 0.5 3.50 1.0
3.50 3.40–3.60 17.0 13.5–20.5 3.45 3.40–3.50 12.5 12.5–16.0
4.10 3.85–4.35 13.0 13.0–19.5 3.35 3.10–3.60 8.0 8.0–10.0
4.25 4.05–4.45 30.0 30.0–45.0 4.20 4.10–4.30 30.0 22.5–37.5
4.55 4.35–4.75 60.0 60.0–80.0 4.80 4.70–4.80 50.0 50.0–65.0
4.40 4.25–4.55 110.0 90.0–110.0 4.20 4.10–4.30 110.0 90.0–110.0
4.75 115.0 4.75 132.5

Cell 3e Cell 3f
Vs +Vs H +H Vs +Vs H +H
2.10 1.0 1.70 0.2
2.60 4.0 2.40 1.0
3.00 1.0 3.15 3.2
3.20 1.0 3.15 0.5
3.20 1.0 3.15 3.0
3.40 3.35–3.45 18.0 15.0–21.0 3.15 3.15–3.30 10.0 10.0–14.0
4.25 4.10–4.40 30.0 27.5–32.5 3.85 3.65–4.05 25.0 25.0–37.5
4.75 4.70–4.80 60.0 45.0–75.0 4.40 4.20–4.60 30.0 30.0–40.0
4.20 4.15–4.25 90.0 70.0–90.0 4.40 4.20–4.60 100.0 80.0–100.0
4.50 4.25–4.75 50.0 50.0–70.0 4.40 4.25–4.55 70.0 70.0–90.0
4.75 93.0 4.75 107.0



Optimization for non-linear inverse problems 41

Cell 4d Cell 4e
Vs +Vs H +H Vs +Vs H +H
0.00 0.0 2.30 4.0
1.76 3.0 3.25 1.0
2.25 1.0 3.25 0.5
3.40 1.0 3.35 1.5
3.40 1.0 3.45 1.0
3.60 3.55–3.65 11.5 9.5–13.0 3.50 3.45–3.55 15.0 15.0–20.0
3.55 3.50–3.60 9.5 8.0–11.5 4.00 3.80–4.20 30.0 22.5–37.5
4.15 4.10–4.20 37.0 36.5–37.5 4.80 4.70–4.80 30.0 30.0–40.0
4.85 4.80–4.90 50.0 48.5–51.5 4.40 4.20–4.60 100.0 80.0–100.0
4.20 4.15–4.25 100.0 95.0–105.0 4.05 4.05–4.25 60.0 60.0–85.0
4.75 135.0 4.75 106.0

Cell 5d Cell 5e
Vs +Vs H +H Vs +Vs H +H
2.10 3.0 2.10 4.0
2.10 1.0 3.30 1.0
3.30 1.5 3.30 0.5
3.60 1.5 3.60 1.5
3.60 1.0 3.60 1.0
3.50 3.45–3.55 21.0 17.0–25.0 3.75 3.65–3.85 24.0 20.0–28.0
4.30 4.05–4.55 30.0 25.0–35.0 4.30 4.15–4.45 25.0 25.0–37.5
4.60 4.55–4.65 30.0 30.0–40.0 4.55 4.35–4.75 60.0 45.0–60.0
4.40 4.25–4.55 60.0 60.0–80.0 4.30 4.15–4.45 90.0 70.0–90.0
4.00 4.00–4.20 60.0 60.0–90.0 4.50 4.25–4.75 50.0 50.0–75.0
4.75 140.0 4.75 92.0

Cell 6d Cell 7d
Vs +Vs H +H Vs +Vs H +H
2.20 3.0 2.20 3.0
2.30 1.0 2.30 1.0
3.30 1.5 3.30 1.0
3.45 1.0 3.50 0.5
3.45 0.5 3.50 0.5
3.95 3.85–4.05 4.5 4.5–6.5 3.90 3.75–4.05 6.5 6.5–8.5
3.50 3.40–3.60 20.0 16.0–24.0 3.50 3.35–3.65 16.0 13.0–19.0
4.40 4.30–4.50 70.0 55.0–70.0 4.20 4.10–4.30 40.0 40.0–55.0
4.50 4.40–4.60 60.0 60.0–85.0 4.40 4.25–4.55 110.0 85.0–110.0
4.40 4.20–4.60 110.0 85.0–110.0 4.50 4.25–4.75 120.0 90.0–120.0
4.75 77.5 4.75 50.5
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Cell 8d
Vs +Vs H +H
2.30 3.0
2.30 1.0
3.25 1.5
3.45 0.5
3.45 1.0
3.55 3.45–3.65 22.0 16.5–27.5
4.20 3.95–4.45 15.0 15.0–22.5
4.40 4.25–4.55 74.0 57.0–74.0
4.40 4.20–4.60 50.0 50.0–70.0
4.50 4.25–4.75 100.0 75.0–100.0
4.75 81.0
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