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(Seismic) Wave physics

Basic physical concepts 
What is a wave?
Discrete and continuous models
Born of wave equation
Dispersion

Basic physical concepts 2 
PDE: Poisson, diffusion and wave equation
Scattering and diffusion
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Fabio Romanelli Seismic Wave physics

What is a wave? 
Small perturbations of a 
stable equilibrium point

Repulsive Potential ∝ 1/rm

Attractive Coulombic 
Potential ∝ 1/r

Total Potential

Linear 
restoring force

Harmonic 
Oscillation
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Fabio Romanelli Seismic Wave physics

What is a wave? - 2
Small perturbations of a 
stable equilibrium point

Linear 
restoring force

Harmonic 
Oscillation

Coupling of 
harmonic oscillators 

the disturbances can 
propagate, superpose 
and stand

Normal modes of the system
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Monoatomic 1D lattice
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(Seismic) Wave physics

Basic physical concepts 
What is a wave?
Discrete and continuous models
Born of wave equation

Continuum mechanics
Sound waves
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Wave equation Seismic Wave physics

Towards sound waves...

Consider a source causing a perturbation in the gas 
medium rapid enough to cause a pressure variation and not a 
simple molecular flux.

The regions where compression (or rarefaction), and thus 
the density variation of the gas, occurs are big compared to 
the mean free path (average distance that gas molcules travel 
without collisions).

The perturbation fronts are planes and the displacement 
induced in the gas, X, depends only on x & t (and not on y, z).
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Wave equation Seismic Wave physics

The conventional unit for pressure is bar=105N/m2 and the 
pressure at the equilibrium is: 1atm=1.0133bar

The pressure perturbations associated to the sound wave 
passage are typically of the order of 10-7bar, thus very small 
if compared to the value of pressure at the equlibrium.

One can thus assume that:

P=P0+ΔP   ρ=ρ0+Δρ

where ΔP and Δρ are the values of the (small) perturbations 
of the pressure and density from the equlibrium.
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Wave equation Seismic Wave physics

Sound wave equation - 1

The gas moves and causes density variations
Let us consider the displacement field, s(x,t) induced by sound 

x x+Δx

old volume

x+s(x,t) x+Δx+s(x+Δx,t)

new volume

and considering a unitary area perpendicular to x, direction of propagation, one 
has that the quantity of gas enclosed in the old and new volume is the same

  

€ 

ρ0Δx = ρ x +Δx + s(x +Δx) − x − s(x)[ ]
where,  since Δx is small,  s(x + Δx) ≈ s(x) +

∂s
∂x

Δx

ρ0Δx = (ρ0 +Δρ) Δx +
∂s
∂x

Δx
 

 
 
 

 

 
 
 

= ρ0Δx +ρ0
∂s
∂x

Δx + ΔρΔx + ...
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Wave equation Seismic Wave physics

thus, neglecting the second-order term, one has:

  
Δρ = −ρ0

∂s
∂x

relation between the variation of displacement along x with 
the density variation. The minus sign is due to the fact that, 
if the variation is positive the volume increases and the 
density decreases.

If the displacement field is constant the gas is simply 
translated without perturbation.
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Wave equation Seismic Wave physics

Sound wave equation - 2

The pressure in the medium is related to density with a 
relationship of the kind P=f(ρ), 
that at the equilibrium is P0=f(ρ0).

  

€ 

P = P0 + ΔP = f(ρ) = f(ρ0 + Δρ) ≈ f(ρ0) + Δρ ′ f (ρ0 ) = P0 + Δρκ

and neglecting second-order terms:

  ΔP = κΔρ
  

€ 

con κ = ′ f (ρ0) =
dP
dρ

 

 
  

 

 
  

0

Density variations cause pressure variations
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Wave equation Seismic Wave physics

Sound wave equation - 3

The gas in the volume is accelerated by the 
different pressure exerted on the two sides...

thus:

  
ρ0

∂2s
∂t2

= −
∂ΔP
∂x

Pressure variations generate gas motion

  

€ 

P(x,t) − P(x +Δx,t) ≈ − ∂P
∂x

Δx = −
∂(P0 +ΔP)

∂x
Δx = −

∂ΔP
∂x

Δx

= ρ0Δx ∂2s
∂t2

  for Newton's 2nd law
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Wave equation Seismic Wave physics

Sound wave equation

Using 1, 2 and 3 we have

thus:

  

€ 

ρ0
∂2s
∂t2

= −
∂ΔP
∂x

= −
∂ κΔρ( )
∂x

= −

∂ κ −ρ0
∂s
∂x

 

 
  

 

 
  

 

 
 
 

 

 
 
 

∂x

  

€ 

1
κ

∂2s
∂t2

=
∂2s
∂x2

i.e. the typical wave equation, describing a perturbation 
traveling with velocity   

€ 

v = κ
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Wave equation Seismic Wave physics

Sound wave velocity - isothermal

From the sound wave equation

  

€ 

v = κ =
dP
dρ

 

 
  

 

 
  

0

Newton computed the derivative of the pressure assuming 
that the heat is moving from one to another region in a such 
rapid way that the temperature cannot vary - isotherm    
PV=constant i.e. P/ρ=constant, thus

called isothermal sound velocity
  

€ 

v =
dP
dρ

 

 
  

 

 
  

0

= constant( )
0

=
P
ρ

 

 
  

 

 
  

0
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Sound wave velocity - adiabatic

Laplace correctly assumed that the heat flux between a 
compressed gas region to a rarefied one was negligible, and, 
thus, that the process of the wave passage was  adiabatic  
PVγ=constant, P/ργ=constant,  with γ ratio of the specific 
heats: Cp/Cv

called adiabatic sound velocity

  

€ 

v =
dP
dρ

 

 
  

 

 
  

0

=
γ

ρ
constantργ

 

 
  

 

 
  

0

= γ
P
ρ

 

 
  

 

 
  

0
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Sound wave velocity in the air

Using the ideal gas law

PV=nRT=NkT

 one can write the velocity on many ways:

showing that it depends on temperature only. If the “dry” 
air is considered (biatomic gas  γ=7/5) one has:

v=331.4+0.6Tc m/s        (temperature measured in Celsius)

  

€ 

v =
γP
ρ

=
γPV
ρV

=
γnRT

m
=

γNkT
Nmmol

=
γKT
mmol

=
γRT

weightmol
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BC and 1D systems

L
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Wave equation Seismic Wave physics

Sound speed

Sound velocity depends on the compressibility of the 
medium. 
If the medium has a bulk modulus B and density at the 
equilibrium is ρ, the sound speed is:        v = (B/ρ)1/2

that can be compared with the velocity of transversal waves 
on a string:      

v = (F/µ)1/2 

Thus, velocity depends on the elastic of the 
medium (B or F) and on inertial (ρ or µ) properties 

19
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What is a wave? - 3 
Small perturbations of a 
stable equilibrium point

Linear 
restoring force

Harmonic 
Oscillation

Coupling of 
harmonic oscillators 

the disturbances can 
propagate, superpose 
and stand

WAVE: organized propagating imbalance, 
satisfying differential equations of motion 

2

2

22

2

t
y

v
1

x
y

∂

∂
=

∂

∂

General form of LWE
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(Seismic) wave propagation

Basic physical concepts 
What is a wave?
Discrete and continuous models
Born of wave equation

Dispersion
discreteness
stiffness
geometry
boundaries
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Dispersion relation
In classical mechanics, the Hamilton’s principle the perturbation 
scheme applied to an averaged Lagrangian for an harmonic wave field 
gives a characteristic equation: Δ(ω,ki)=0

Longitudinal wave in a rod

  

€ 

( ∂2

∂x2
−
ρ

E
∂2

∂t2
)φ = 0 ⇒ ω = ±kc

Acoustic wave

  

€ 

( ∂2

∂x2
−
ρ

B
∂2

∂t2
)φ = 0 ⇒ ω = ±kc

Transverse wave in a string

  

€ 

( ∂2

∂x2
−

µ

F
∂2

∂t2
)φ = 0 ⇒ ω = ±kc

k

w
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Dispersion Seismic Wave physics

Dispersion relation
In physics, the dispersion relation is the relation between the energy of 
a system and its corresponding momentum. For example, for massive 
particles in free space, the dispersion relation can easily be calculated 
from the definition of kinetic energy:

For electromagnetic waves, the energy is proportional to the frequency 
of the wave and the momentum to the wavenumber. In this case, 
Maxwell's equations tell us that the dispersion relation for vacuum is 
linear: ω=ck. 

The name "dispersion relation" originally comes from optics. It is 
possible to make the effective speed of light dependent on wavelength 
by making light pass through a material which has a non-constant index 
of refraction, or by using light in a non-uniform medium such as a 
waveguide. In this case, the waveform will spread over time, such that a 
narrow pulse will become an extended pulse, i.e. be dispersed.

  

€ 

E =
1
2

mv2 =
p2

2m
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Dispersion...
In optics, dispersion is a phenomenon that causes the separation of a wave into 
spectral components with different wavelengths, due to a dependence of the 
wave's speed on its wavelength. It is most often described in light waves, but it 
may happen to any kind of wave that interacts with a medium or can be confined 
to a waveguide, such as sound waves. There are generally two sources of 
dispersion: material dispersion, which comes from a frequency-dependent 
response of a material to waves; and waveguide dispersion, which occurs when 
the speed of a wave in a waveguide depends on its frequency.

In optics, the phase velocity of a wave v in a given uniform medium is given by: 
v=c/n, where c is the speed of light in a vacuum and n is the refractive index of 
the medium. In general, the refractive index is some function of the frequency 
of the light, thus n = n(f), or alternately, with respect to the wave's wavelength   
n = n(λ). For visible light, most transparent materials (e.g. glasses) have a 
refractive index n decreases with increasing wavelength λ (dn/dλ<0, i.e.           
dv/dλ>0).  In this case, the medium is said to have normal dispersion and if the 
index increases with increasing wavelength the medium has anomalous dispersion.
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Group velocity
Another consequence of dispersion manifests itself as a temporal effect. The 
phase velocity is the velocity at which the phase of any one frequency 
component of the wave will propagate. This is not the same as the group 
velocity of the wave, which is the rate that changes in amplitude (known as 
the envelope of the wave) will propagate. The group velocity vg is related to the 
phase velocity by, for a homogeneous medium (here λ is the wavelength in 
vacuum, not in the medium):

  
vg = c n− λ dn

dλ

 

 
  

 

 
  

−1

= v − λ dv
dλ

and thus in the normal dispersion case 
vg is always < v !
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Dispersion...
The group velocity itself is usually a function of the wave's frequency. This 
results in group velocity dispersion (GVD),that is often quantified as the group 
delay dispersion parameter (again, this formula is for a uniform medium only): 
If D is less than zero, the medium is said to have positive dispersion. If D is 
greater than zero, the medium has negative dispersion. !"
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€ 

D = −
λ

c
d2n
dλ2

 

 
  

 

 
  

Airy Phase –
 wave that arises if the phase and the 
change in group velocity are stationary  
and gives the highest amplitude in 
terms of group velocity and are 
prominent on the seismogram. 
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Dispersion examples

Discrete systems: lattices

Boundary waves: plates and rods

Discontinuity interfaces are intrinsic in 
their propagation since they allow to 
store energy (not like body waves)!

Stiff systems: rods and thin plates

27
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Diatomic 1D lattice
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Acoustic and optical modes

Monoatomic chain 
acoustic longitudinal mode

Monoatomic chain 
acoustic transverse mode

Diatomic chain 
acoustic transverse mode

Diatomic chain 
optical transverse mode
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Dispersion Seismic Wave physics

Dispersion examples

Discrete systems: lattices

Boundary waves: plates and rods

Discontinuity interfaces are intrinsic in 
their propagation since they allow to 
store energy (not like body waves)!

Stiff systems: rods and thin plates
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Apparent horizontal velocity
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SH Waves in plates: Geometry
In an elastic half-space no SH type surface waves exist. Why? 
Because there is total reflection and no interaction between an evanescent P wave 
and a phase shifted SV wave as in the case of Rayleigh waves. What happens if we 
have a layer delimited by two free boundaries, i.e. a homogeneous plate?

Repeated reflection in the layer allow interference between incident and reflected 
SH waves: SH reverberations can be totally trapped.

SH
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SH waves: trapping 
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k = kx =
ω

c
;    ωηβ = kz =

ω

c
c2

β2
− 1 = krβ

SH
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uy = Aexp[i(ωt +ωηβz −kx)] +B exp[i(ωt − ωηβz −kx)]

  

€ 

uy = Aexp[i(ωt +krβz −kx)] +B exp[i(ωt −krβz −kx)]

The formal derivation is very similar to the derivation of the Rayleigh waves. The 
conditions to be fulfilled are: free surface conditions
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∂uy

∂z
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= ikrβµ Aexp[i(ωt +krβ2h−kx)]−B exp[i(ωt −krβ2h−kx)]{ } = 0
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SH waves: eigenvalues...

SH

that leads to:   

€ 

krβ2h = nπ with n=0,1,2,...
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EM waveguide animations

http://www.ee.iastate.edu/~hsiu/descriptions/paral.html
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Dispersion Seismic Wave physics

Acoustic waveguides...
SOFAR channel (Sound Fixing And Ranging channel)

Sound speed as a function of depth at a position 
north of Hawaii in the Pacific Ocean derived from 
the 2005 World Ocean Atlas. The SOFAR channel 
axis is at ca. 750-m depth.
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Dispersion examples

Discrete systems: lattices

Boundary waves: plates and rods

Discontinuity interfaces are intrinsic in 
their propagation since they allow to 
store energy (not like body waves)!

Stiff systems: rods and thin plates

43



Dispersion Seismic Wave physics

Stiffness...

How "stiff" or "flexible" is a material? It depends on whether we 
pull on it, twist it, bend it, or simply compress it. In the simplest case 
the material is characterized by two independent "stiffness 
constants" and that different combinations of these constants 
determine the response to a pull, twist, bend, or pressure.
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Bending

For y = 0 as the neutral axis, assuming strain linear in y, 
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Since this must = 0, we find that 

the y = 0 axis must be at the 

centroid of the cross-section in the 

y-direction.

Now compute the moment (torque) for this case:
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The moment that is generated 

elastically by this kind of bending is 

proportional to the areal moment of 

inertia around the neutral axis!

Bending
Again, for arbitrary coordinates, neutral 

axis is such that

=
dyyw

dyyyw
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Areal moment of inertia about the neutral axis is then just

#= dyywyyI )()(
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I-beams are stiff in flexure because their area is concentrated far 

from their neutral axis!

Euler Bernoulli equation

  

€ 

( ∂4

∂x4
−
ρA
EI

∂2

∂t2
)w = 0 ⇒ ω = ±k2 EI

ρA
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Stiffness...
Stiffness in a vibrating string introduces a restoring force proportional to the 
bending angle of the string and the usual stiffness term added to the wave 
equation for the ideal string. Stiff-string models are commonly used in piano 
synthesis and they have to be included in tuning of piano strings due to 
inharmonic effects.
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+

E
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−
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∂t2
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Waves in plates
In low frequency plate waves, there are two distinct type of harmonic motion. These 
are called symmetric or extensional waves and antisymmetric or flexural waves.

c ! c "# $
"%!&'f … frequency 

(rad/sec)

2h

If one looks for solutions of the form

( ! f y# $exp ik x ) ct# $* +

, ! g y# $exp ik x ) ct# $* +

Lamb (Plate) Waves

c ! c "# $
"%!&'f … frequency 

(rad/sec)

2h

If one looks for solutions of the form

( ! f y# $exp ik x ) ct# $* +

, ! g y# $exp ik x ) ct# $* +

Lamb (Plate) Waves

then solutions of the following two types are found:

f ! Acosh "y# $

g ! Bsinh %y# $

f ! &'A sinh "y# $

g ! &'B cosh %y# $

extensional waves

flexural waves
10

10

x

y2h

(b)

(a)
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tanh !h" #
tanh $h" #

%
4&2$!

c2 &2 / c2 ' ! 2" #2
()
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+)
+)

,)

-)

.)

.)

/1

$ %
&
c

10
c2

cp
2 , ! %

&
c

10
c2

cs
2

+  … extensional waves

- … flexural waves

satisfying the boundary conditions 0yy xy1 1% %

on y % /h gives the Rayleigh-Lamb equations:

There are multiple solutions of these equations. For each

solution the wave speed, c, is a different function of 

frequency. Each of these different solutions is called a "mode"

of the plate. 47
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consider the extensional waves

! "

2 2 2 2 2 2

2
2 22 2

tanh 2 1/ 1/ 4 1 / 1 /

2 /tanh 2 1/ 1/
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fh c c c c c c
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If we let kh )
2#fh
c

** 1 (high frequency)

then both tanh functions are + 1

and we find 2 & c2
/ cs

2! "2 ) 4 1& c2
/ cs

2
1& c2

/ cp
2

so we just have Rayleigh waves on both stress-free surfaces:
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In contrast for kh <<1  (low frequency)

we find
tanh !h" # $ !h

tanh %h" # $ %h

and the Rayleigh-Lamb equation reduces to

2 & c
2

/ cs
2" #

2
' 4 1& c

2
/ cp

2" #

which can be solved for c to give

c ' cplate '
E

( 1&) 2" #
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Waves in plates
In low frequency plate waves, there are two distinct type of harmonic motion. These 
are called symmetric or extensional waves and antisymmetric or flexural waves.

Flexural waves in thin plates

Longitudinal waves in thin rods
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Lamb waves
Lamb waves are waves of plane strain that occur in a free plate, and the traction force 
must vanish on the upper and lower surface of the plate. In a free plate, a line source 
along y axis and all wave vectors must lie in the x-z plane. This requirement implies 
that response of the plate will be independent of the in-plane coordinate normal to the 
propagation direction.
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Elastic waves in rods
Three types of elastic waves can propagate in rods: (1) longitudinal waves, (2) 
flexural waves, and (3) torsional waves. Longitudinal waves are similar to the 
symmetric Lamb waves, flexural waves are similar to antisymmetric Lamb waves, 
and torsional waves are similar to horizontal shear (SH) waves in plates.
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Torsional modes dispersion
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Fabio Romanelli Seismic Wave physics

What is a wave? - 4 

WAVE: organized propagating imbalance, 
satisfying differential equations of motion 

Organization can be destroyed, 
when interference is destructive

Turbulence

non linearity

Diffusion

strong 
scattering

Small perturbations of a 
stable equilibrium point

Linear 
restoring force

Harmonic 
Oscillation

Coupling of 
harmonic oscillators 

the disturbances can 
propagate, superpose, 
stand, and be dispersed
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(Seismic) wave propagation

Basic physical concepts 
What is a wave?
Discrete and continuous models
Born of wave equation
Dispersion

Basic physical concepts 2 
PDE: Poisson, diffusion and wave equation
Navier-Stokes equation
Scattering and diffusion
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Mathematic reference: Linear PDE
Classification of Partial Differential Equations (PDE)

Second-order PDEs of two variables are of the form:

  
a
∂2f x, y( )
∂x2 + b

∂2f x, y( )
∂x∂y

+ c
∂2f x,y( )
∂y2 + d

∂f x, y( )
∂x

+ e
∂f x,y( )
∂y

= F x,y( )

    

€ 

b2 − 4ac < 0            elliptic        LAPLACE equation
b2 − 4ac = 0            parabolic    DIFFUSION equation
b2 − 4ac > 0            hyperbolic  WAVE equation   

Elliptic equations produce stationary and energy-minimizing solutions

Parabolic equations a smooth-spreading flow of an initial disturbance

Hyperbolic equations a propagating disturbance
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













∂=+
∂

∂

∂=
∂

∂
=

∂

∂

∂=

   on   : condition (mixed) Robin (iii)

   on  or   :condition Neumann (ii)

  on   :conditionDirichlet  (i)

R fku 
n
u

Rg
s
uf

n
u

R fu 

R

s

n

∂R

Initial conditions: starting point for 
propagation problems

Boundary conditions: specified on 
domain boundaries to provide the 
interior solution in  computational 
domain

Boundary and Initial conditions
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Wave Equation
Hyperbolic Equation

  

€ 

∂2u
∂ t 2

= v 2 ∂
2u

∂ x2
,    0 ≤ x ≤ a,   0 ≤ t 

I.C.s   
u(x, 0) = f1(x)
u t (x, 0) = f2(x)

 
 
 

    0 ≤ x ≤ a

B.C.s  
u(0, t) = g1(t)
u(a, t) = g2(t)

 
 
 

      t > 0

b2 - 4ac = 0 - 4(1)(-c2) > 0 : Hyperbolic
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Elliptic PDEs
Steady-state two-dimensional heat conduction 

equation is prototypical elliptic PDE

Laplace equation - no heat generation

Poisson equation - with heat source

0
y 
T

x 
T

2

2

2

2

=
∂

∂
+

∂

∂

)y,x(f
y 
T

x 
T

2

2

2

2

=
∂

∂
+

∂

∂
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Heat Equation: Parabolic PDE
Heat transfer in a one-dimensional rod

x = 0 x = a
g1(t) g2(t)

  

€ 

∂u
∂ t

= d ∂
2u

∂ x2
,    0 ≤ x ≤ a,   0 ≤ t ≤T

I.C.s     u(x, 0) = f (x)      0 ≤ x ≤ a

B.C.s  
u(0, t) = g1(t)
u(a, t) = g2(t)

 
 
 

      0 ≤ t ≤T
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Coupled PDE

Navier-Stokes Equations
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(Seismic) wave propagation

Basic physical concepts 
What is a wave?
Discrete and continuous models
Born of wave equation
Dispersion

Basic physical concepts 2 
PDE: Poisson, diffusion and wave equation
Navier-Stokes equation
Scattering and diffusion
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Navier-Stokes Seismic Wave physics

Fluids...

The space occupied by the material will be called the 
domain. 

Solids are materials that have a more or less 
intrinsic configuration or shape and do not conform 
to their domain under nominal conditions. 

Fluids do not have an intrinsic shape; gases are 
fluids that will completely fill their domain (or 
container) and liquids are fluids that form a free 
surface in the presence of gravity. 
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Fluid mechanics assumptions

Classical fluid mechanics, like classical thermodynamics, is concerned 
with macroscopic phenomena (bulk properties) rather than 
microscopic (molecular-scale) phenomena. 

The molecular makeup of a fluid will be ignored in all that follows, and 
the crucially important physical properties of a fluid, e.g., its mass 
density,  ρ, and specific heat, Cp, among others, must be provided 
from outside of this theory. It is assumed that these physical 
properties, along with flow properties, e.g., the pressure, P, velocity, 
v, temperature, T, etc., are in principle definable at every point in 
space, as if the fluid was a smoothly varying continuum, rather than a 
swarm of very fine, discrete particles (molecules).
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Continuity equation 

Conservation of matter
The total mass of fluid flowing, in unit of time, through a surface S, has to be equal to the 
decrease, in unit time, in the mass of fluid in the volume V:

    

€ 

ρv∫ dS = −
∂

∂t
ρdV∫

    
∂ρ

∂t
+ div(ρv) = ∂ρ

∂t
+ρdiv(v) + v ⋅grad(ρ) = 0

that can be compared with what we obtained considering 1D sound waves:

  
Δρ = −ρ0

∂s
∂x

The gas moves and causes density variations
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Internal force due to the fact that in a flowing fluid there can also be a shearing 
stress, and it is called the viscous force

Momentum...
The fluid in the volume is accelerated by the total force 
acting on it:

Fluid moves from high-pressure areas to low-pressure areas. Moving implies that fluid 
moves in direction of largest change in pressure

External forces that act at a distance; we can suppose that they are conservative (like 
gravity and electricity)

    
ρ

dv
dt

= −grad(P) − ρgrad(φ) + fvisc

Newton’s law
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Momentum...
The fluid in the volume is accelerated by the total force 
acting on it:

    
ρ

dv
dt

= −grad(P) − ρgrad(φ) + fvisc

Newton’s law

  
ρ0

∂2s
∂t2

= −
∂ΔP
∂x

that can be compared with what we obtained considering for 1D sound waves:

Pressure variations generate gas motion
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Advection
In mathematics and continuum mechanics, including fluid 
dynamics, the substantive derivative (sometimes the 
Lagrangian derivative, material derivative or advective 
derivative), written D/Dt, is the rate of change of some 
property of a small parcel of fluid.
Note that if the fluid is moving, the substantive derivative is 
the rate of change of fluid within the small parcel, hence the 
other names advective derivative and fluid following 
derivative. Advection is transport of a some conserved scalar 
quantity in a vector field.

    
vx

∂f
∂x

+ vy
∂f
∂y

+ vz
∂f
∂z

= v ⋅grad(f)
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Euler equations

Newton’s law Conservation of matter+ - Viscosity

Using the identity
    

€ 

(v ⋅grad)v = (rotv) × v +
1
2

grad(v2)

and defining the vorticity as     rotv = Ω

    

∂v
∂t

+ (v ⋅grad)v = − grad(P)
ρ

− grad(φ) 1.

    
∂Ω

∂t
+ rot(Ω× v) = 0 2.
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Equation of state
The functional relationship between density, pressure and temperature:

P=P(ρ,T) or equivalently, ρ=ρ(P,T) 

with T the absolute temperature in Kelvin. 

The archetype of an equation of state is that of an ideal gas, P=ρRT/M
where R=8.31 (Joule moles-1 K -1) is the universal gas constant and M is the molecular 
weight (kg/mole). 
If the composition of the material changes, then the appropriate equation of state will 
involve more than three variables, for example the concentration of salt if sea water, or 
water vapor if air. 
An important class of phenomenon may be described by a reduced equation of state 
having state variables density and pressure alone, 

P=P(ρ) or equivalently, ρ = ρ(P) 

and the fluid is said to be barotropic.
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Equation of state - barotropic
The temperature of the fluid will change as pressure work is done on or by the fluid, and yet 
temperature need not appear as a separate, independent state variable provided conditions 
approximate one of two limiting cases:

1)  If the fluid is a fixed mass of ideal gas, say, that can readily exchange heat with a heat 
reservoir having a constant temperature, then the gas may remain isothermal under pressure 
changes;

2) the other limit, which is more likely to be relevant, is that heat exchange with the 
surroundings is negligible because the time scale for significant conduction is very long 
compared to the time scale (lifetime or period) of the phenomenon. In that event the system 
is said to be adiabatic and in the case of an ideal gas the density and pressure are related by 
the well-known adiabatic law.

that can be compared with what we obtained considering sound waves:

Density variations cause pressure variations  ΔP = κΔρ = c2Δρ

  
Δρ =

∂ρ

∂P
ΔP
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Incompressible fluids
In many cases of the flow of fluids their density may be 

supposed invariable, i.e. constant throughout the volume and its 
motion and we speak of incompressible flow

ρ = constant

Conservation of matter div (v)=0

The conditions under which the fluid can be considered incompressible are:

    

∂v
∂t

+Ω× v = −grad 1
2

v2 +
P
ρ

+ φ
 

 
  

 

 
  Euler equation

i.e. v<<c

    

€ 

∂ρ

∂t
<< ρdiv(v) ⇒ Δρ

τ
<<

ρv
λ

  

€ 

Δρ =
ΔP
c2

≈
1
c2

ρ
∂v
∂t

λ
 

 
  

 

 
  ≈

1
c2

ρ
v
τ
λ

 

 
  

 

 
  

i.e.

  

€ 

τ >>
λ

c

i.e. the time taken by a sound signal to traverse distances must be small compared with 
that during which flow changes appreciably
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Long Gravity waves

Having considered gravity waves whose length is small compared with the depth of 
the liquid, let us now discuss the opposite limiting case of waves whose length is large 
compared with the depth. These are called long waves. 

Let us examine the propagation of long waves in a channel that is supposed to be along 
the x-axis, and of infinite length. The cross-section of the channel may have any 
shape, and may vary along its length. We denote the cross-sectional area of the liquid 
in the channel by S = S(x,t). The depth and width of the channel are supposed small in 
comparison with the wavelength. 

We shall here consider longitudinal waves, in which the liquid moves along the channel. 
In such waves the velocity component vx along the channel is large compared with the 
components vy, vz. We denote vx by v simply, and omit small terms. 
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Viscosity
Viscosity is a measure of the resistance of a fluid to deform under shear 
stress. It is commonly perceived as "thickness", or resistance to pouring. 
Viscosity describes a fluid's internal resistance to flow and may be thought of 
as a measure of fluid friction. Thus, water is "thin", having a lower viscosity, 
while vegetable oil is "thick" having a higher viscosity. All real fluids (except 
superfluids) have some resistance to shear stress, but a fluid which has no 
resistance to shear stress is known as an ideal fluid

74



Navier-Stokes Seismic Wave physics

Strain as a measure of  
 To understand deformation due to shear, picture two flat plates with a fixed 

spacing, h, between them:

dx
dy

Fluids are qualitatively different from solids in their response to a shear stress. 
Ordinary fluids such as air and water have no intrinsic configuration, and hence fluids 
do not develop a restoring force that can provide a static balance to a shear stress.
When the shear stress is held steady, and assuming that the geometry does not 
interfere, the shear deformation rate, may also be steady or have a meaningful time-
average.
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Newton’s Law of Viscosity

The viscosity of a fluid measures its resistance to flow under an applied 
shear stress.

 Newton’s law of viscosity

Newtonian fluids Fluids which obey Newton’s law:

Shearing stress is linearly related to the rate of shearing strain.

τ

η

This is called a “flow curve”

The proportionality constant is the viscosity

∴The deformation of a 

material is due to stresses 

imposed to it.   

€ 

τ = η
dv
dy

= η
dγ
dt
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Newtonian Fluids
Viscosity of Newtonian fluids depends only on 

temperature and pressure, e.g.:

Where:ηo:viscosity at To and Po (reference temperature and pressure)

 ΔE: activation energy for flow

 R: gas constant

 β: material property [m2/N]

  

€ 

η T,P( ) = η0e
ΔE
R

T0−T
T0T

 

 
  

 

 
  

 

 
 
 

 

 
 
 eβ P−P0( )
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Plasticity and Yield Stress
The structure of some polymers, especially filled polymers or concentrated suspensions can 
be sufficiently rigid that it permits the material to withstand a certain level of deforming 
stress without flowing. The maximum stress that can be sustained without flow is called the 

“yield stress” and this type of behavior is called “plasticity”

τ

Plastic

Newtonian

Pseudoplastic

τ
ο

ideal
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Viscosity
Viscosity is a measure of the resistance of a fluid to deform under shear stress. It is 
commonly perceived as "thickness", or resistance to pouring. Viscosity describes a 
fluid's internal resistance to flow and may be thought of as a measure of fluid friction. 
Thus, water is "thin", having a lower viscosity, while vegetable oil is "thick" having a 
higher viscosity. All real fluids (except superfluids) have some resistance to shear 
stress, but a fluid which has no resistance to shear stress is known as an ideal fluid

  

€ 

lim
ΔA→0

ΔF
ΔA

= η
∂vx

∂y

thus the shear stress is 
proportional to the 
rate of change of shear 
strain   

€ 

η
∂vy

∂x
+
∂vx

∂y

 

 

 
 

 

 

 
 
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Viscosity - compressible fluids
In the general case there is another term that depends on other derivatives of the 
velocity and the general expression is:

    

€ 

η
∂vy

∂x
+
∂vx

∂y

 

 

 
 

 

 

 
 + ′ η δij div(v)( )

so two constants are required: the “first coefficient of viscosity” or “shear viscosity 
coefficient” and “second coefficient of viscosity” . 

The component of the viscous force per unit volume in the direction of the rectangular 
coordinate xj is:

    

€ 

fvisc = ηΔv + (η+ ′ η )grad div(v)( )
    

€ 

(fvisc )i =
∂τij

∂xjj=1,3
∑ =

∂

∂xj

η
∂vi

∂xj

+
∂v j

∂xi

 

 

 
 

 

 

 
 

 

 

 
 

 

 

 
 
+

∂

∂xi

′ η div(v)( )
j=1,3
∑
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Navier-Stokes equations

Newton’s law Conservation of matter+ + Viscosity

    
ρ
∂v
∂t

+ρ(v ⋅grad)v = −grad(P) − ρgrad(φ) +

    
+ηΔv + (η+ ′ η )grad div(v)( )

and in the incompressible case...

    

∂Ω

∂t
+ rot(Ω× v) = η

ρ
ΔΩ
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Elasticity...
the study and determination of the response of 
continuous, perfectly elastic solids subjected to 
applications of forces

Strain rate (s-1) 10510-5

Rapid“Static”

“Dynamic”
Inertia forces included

“Quasistatic”
Inertia forces neglected

Creep Impulse

Wave propagation
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(Seismic) wave propagation

Basic physical concepts 
What is a wave?
Discrete and continuous models
Born of wave equation
Dispersion

Basic physical concepts 2 
PDE: Poisson, diffusion and wave equation
Navier-Stokes equation
Scattering and diffusion
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Basic concepts of EM wavefield
Extinction and emission are two main types of the interactions 

between an electromagnetic radiation field and a medium (e.g., the 
atmosphere). 

Extinction is due to absorption and scattering.

Absorption is a process that removes the radiant energy from an 
electromagnetic field and transfers it to other forms of energy.

Scattering is a process that does not remove energy from the 
radiation field, but redirect it. Scattering can be thought of as 
absorption of radiant energy followed by re-emission back to the 
electromagnetic field with negligible conversion of energy, i.e.can 
be a “source” of radiant energy for the light beams traveling in 
other directions. 

 Scattering occurs at all wavelengths (spectrally not selective) in 
the electromagnetic spectrum, for any material whose refractive 
index is different from that of the surrounding medium (optically 
inhomogeneous). 
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Scattering of EM wavefield (1)
The amount of scattered energy depends strongly on the ratio of:

particle size (a) to wavelength (λ) of the incident wave

When (a < λ/10), the 
scattered intensity on 

both forward and 
backward directions are 

equal. This type of 
scattering is called 
Rayleigh scattering. 

For (a > λ), the angular 
distribution of scattered 
intensity becomes more 

complex with more 
energy scattered in the  
forward direction. This 

type of scattering is 
called Mie scattering
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Scattering of EM wavefield (2)
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 χ=2πa/λ

For (a >> λ), the 
Scattering 
characteristics are 
determined from 
explicit Reflection, 
Refraction and 
Diffraction: 
Geometric "Ray" 
Optics

Single Scattering
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Scattering of EM wavefield (3)
Composition of the scatterer (n) is important!

The interaction (and its redirection) of electromagnetic radiation with matter
May or may not occur with transfer of energy, i.e., the scattered radiation has a slightly

different or the same wavelength.

Rayleigh scattering -
Light out has same

frequency as light in,
with scattering at many

different angles.

Raman scattering - Light is
scattered due to vibrations in
molecules or optical phonons
in solids. Light is shifted by as
much as 4000 wavenumbers
and exchanges energy with a
molecular vibration.
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Scattering of EM wavefield (4)
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Scattering and Absorption
When the photon is absorbed and re-emitted at a 

different wavelength, this is absorption.

Transmissivity of the Earth’s atmosphere
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Scattering and Diffusion
In single scattering, the properties of the scatterer are 
important , but multiple scattering erases these effects - 
eventually all wavelengths are scattered in all directions. 

Works for turbid media: clouds, 
beer foam, milk, etc...

Example: when a solid has a very low temperature, 
phonons behave like waves (long mean free paths) and 

heat propagate following ballistic term. 
At higher temperatures, the phonons are in a diffusive 

regime and heat propagate following Maxwell law.
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(Seismic) wave propagation

Basic physical concepts 
What is a wave?
Discrete and continuous models
Born of wave equation
Dispersion

Basic physical concepts 2 
PDE: Poisson, diffusion and wave equation
Navier-Stokes equation
Scattering and diffusion

Application to the seismic wavefield
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Basic parameters for seismic wavefield

The governing parameters for the seismic scattering are:

With special cases:
•  a = L    homogeneous region
•  a >> λ    ray theory is valid
•  a ≈ λ     strong scattering effects

wavelength of the wavefield (or wavenumber k)
λ (100-106 m)
correlation length, or dimension, of the heterogeneity
a (10?-105 m)

distance travelled in the heterogeneity
L (100-106 m)
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Seismic Scattering (1) 

Wave propagation problems 
can be classified using the 
parameters just 
introduced. 

This classification is 
crucial for the choice of 
technique to calculate 
synthetic seismograms

(Adapted from Aki and Richards, 1980)
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Scattering in a perturbed model
Let us consider a perturbed model:

reference+perturbation (in elastic parameters)

  ρ = ρ0 + εδρ     λ = λ0 + εδλ      µ = µ0 + εδµ

resulting in a velocity perturbation

  c = c0 + εδc

solution: Primary field + Scattered field
    u = u0 + u1 δρ,δλ ,δµ( )

satisfying equations of motion:

    

€ 

ρ0˙ ̇ u i
0 − λ0 +µ0( ) ∇⋅u 0( ) ,i

−µ0∇
2u i

0 = 0

    

€ 

ρ0˙ ̇ u i − λ∇⋅u( ),i
− µ u i,j + u j,i( )[ ] , j

= 0

    

€ 

ρ0 ˙ ̇ u i
1 − λ 0 + µ0( ) ∇ ⋅ u1( ),i

−µ0∇
2ui

1 = Qi
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Point Scatterers
How does a point-like perturbation of the elastic parameters affect 
the wavefield?

Perturbation of the different 
elastic parameters produce 
characteristic radiation 
patterns. These effects are 
used in diffraction 
tomography to recover the 
perturbations from the 
recorded wavefield. 

(Figure from Aki and Richards, 1980)
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Correlation distance
When velocity varies in all directions with a finite scale length, it is more convenient to

consider spatial fluctuations

Autocorrelation function (a is the correlation distance):

    

N r1( ) =

δc r( )
c0 r( )

δc r + r1( )
c0 r + r1( )
δc r( )
c0 r( )

 

 
 

 

 
 

2 =
e− r1 /a

e− r1 /a( )2

 
 
 

  

Power Spectra of scattered waves

    

€ 

u1
2
∝

k 4 1+ 4k 2a 2 sin 2 θ
2

 

 
 

 

 
 

-2

      

k 4 exp −k 2a 2 sin 2 θ
2

 

 
 

 

 
 

 

 

 
 

 

 
 

  

€ 

∝ k4  if  ka <<1 (Rayleigh scattering)
  

€ 

if  ka is  large (forward scattering)
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Wave parameter
Energy loss through a cube of size L (Born approximation)

  

ΔI
I
∝

k4a3L 1+ 4k2a2( )−1

k2aL 1− ek2a2( )−1

 

 
 

 
 

  

but violates the energy conservation law and it is valid if (<0.1)

the perturbations (P &A) are function of the wave parameter:

  
D = 4L

ka2   

  
D =

0    phase perturbation 
∞   phase = amplitude
 
 
 

  

when D<1, geometric ray theory is valid
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Seismic Scattering (2) 

Wave propagation problems 
can be classified using the 
parameters just 
introduced. 

This classification is 
crucial for the choice of 
technique to calculate 
synthetic seismograms

(Adapted from Aki and Richards, 1980)
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From scattering....
Multiple scattering process leads to attenuation (spatial loss non a true dissipative one)

and energy mean free path

σ(θ) is the differential scattering cross-section and after a wave has travelled a
distance x, the energy is reduced by an amount of

  e
−Σx    Σ = σ cosθ( )

−1
+1
∫ dcosθ 

and the average path length between scattering events is

  
l = e−Σx

0
∞
∫ dx = 1

Σ

θ
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Towards random media
forward scattering tendency

  

Σ ' = cosθ( )σ cosθ( )
−1
+1
∫ dcosθ

> 0 forward
≈ 0 isotropic

< 0 backward

 

 
 

 
 

 

Multiple scattering randomizes the phases of the waves adding a diffuse (incoherent)
component to the average wavefield.

Statistical approaches can be used to derive elastic radiative transfer equations

Diffusion constants
use the definition of a diffusion (transport) mean free path

  

d =
cl *
3

   l* = l
Σ - Σ'

 (acoustic)

d =
l

1+ 2K3
cplp

*

3
+ 2K2 csls

*

3

 

 
 
 

 

 
 
  (elastic)

for non-preferential scattering l* coincides with energy mean free path, l
for enhanced forward scattering l*>l

Experiments for ultrasound in materials can be applied to seismological problems…
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Scattering in random media

 How is a propagating wavefield affected by random heterogeneities?
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Synthetic seismograms

Synthetic seismograms for a global model 
with random velocity perturbations. 

When the wavelength is long compared to the correlation length, scattering effects 
are difficult to distinguish from intrinsic attenuation.
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Seismic Scattering Classification

Wave propagation problems 
can be classified using the 
parameters just 
introduced. 

This classification is crucial 
for the choice of technique 
to calculate synthetic 
seismograms

(Adapted from Aki and Richards, 1980)
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What is a wave? - 5 

WAVE: organized propagating imbalance, 
satisfying differential equations of motion 

Organization can be destroyed, 
when interference is destructive

Turbulence

non linearity

Diffusion

strong 
scattering

Exceptions
Solitons Phonons

Small perturbations of a 
stable equilibrium point

Linear 
restoring force

Harmonic 
Oscillation

Coupling of 
harmonic oscillators 

the disturbances can 
propagate, superpose, 
stand, and be dispersed
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Tsunami physics
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Dispersion & Non linearity
The dynamics of water waves in shallow water is described 
mathematically by the Korteveg - de Vries (KdV) equation

u=u(x,t) measures the elevation at time t and position x, 
i.e. the height of the water above the equilibrium level

Dispersive term

  ut + uxxx = 0

Nonlinearity

  ut + u ux = 0

KdV

  ut + uxxx + u ux = 0
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