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(Seismic) Wave physics

Basic physical concepts
What is a wave?
Discrete and continuous models
Born of wave equation
Dispersion

Basic physical concepts 2
PDE: Poisson, diffusion and wave equation
Scattering and diffusion




What is a wave?

Small perturbations of a Linear
stable equilibrium point

Harmonic
restoring force

Oscillation
Potential energy
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What is a wave? - 2

Small perturbations of a Linear Harmonic
stable equilibrium point restoring force Oscillation

the disturbances can
— > propagate, superpose
and stand

Coupling of
harmonic oscillators

VA S AR A

Normal modes of the system
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Monoatomic 1D lattice

Interatomic potential

Now we consider a monatomic 1-D lattice in the x-direction. The lattice atoms are very
close to eqilibrium. Let us examine a single i-th atom and find the r; potential as a function
of displacement from equilibrium, U(r;).

W (o) f

. ] L] ] ® . ]
(ith atom)

equilibrium position ry

1
We expand this potential into a Taylor’s series: °§ / r

du 1 d?U 1 d°U
U(G)=U(fo)+(fi—fo)(ﬁl +§(ri_r0)2(W) +g(f/—"o)3[wj *

The first term of this expansion is just the equilibrium binding energy (= const). The second
term is the slope of the potential at its minimum (= 0). The fourth and higher terms become
increasingly smaller. We are therefore left with the third term as the only significant change
in the potential energy for a small displacement u = r-r,. This has the form

AU ="%Cu? (C=d?Uldr? atr;=r,)
representing the harmonic approximation, since it is the same as the energy stored in a
spring, or the potential energy of a harmonic oscillator. Our simple model of the dynamic
crystal structure should therefore be a “ball and spring” model, with the lengths of the
springs equivalent to the equilibrium separations of the ion cores.

Fabio Romanelli Seismic Wave physics
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Monatomic 1D lattice

Let us examine the simplest periodic system within the context of harmonic approximation
(F = dU/du = Cu) - a one-dimensional crystal lattice, which is a sequence of masses m

connected with springs of force constant C and separation a.

The collective motion of these springs will Mass M

correspond to solutions of a wave equation. U1 Uy Myt

Note: by construction we can see that 3 types -\ @\ NN\ NN\ E-NVN\@-

of wave motion are possible, —r
n—1 ] n+1 a

2 transverse, 1 longitudinal (or compressional)

How does the system appear with a longitudinal wave?:

The force exerted on the n-th atom in the
lattice is given by

et - U

Fn = Fn+1,n - Fn-1,n = C[(Un+1 - Un) - (Un — Un_1)]. '. "‘ '_‘ '_‘

Zun-1 Zun : U : u.,
Applying Newton’s second law to the motion : * | > :
of the n-th atom we obtain 2
du
t=F,= _C(zun —Uy un—1)

dt? "
Note that we neglected hereby the interaction of the n-th atom with all but its nearest neighbors.
A similar equation should be written for each atom in the lattice, resulting in N coupled differential
equations, which should be solved simultaneously (N - total number of atoms in the lattice). In
addition the boundary conditions applied to end atoms in the lattice should be taken into account.

M

Fabio Romanelli Seismic Wave physics
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(Seismic) Wave physics

Basic physical concepts
What is a wave?
Discrete and continuous models
Born of wave equation
Continuum mechanics
Sound waves




Towards sound waves... ©

S——

lZConsider a source causing a perturbation in the gas
medium rapid enough to cause a pressure variation and not a
simple molecular flux.

MThe regions where compression (or rarefaction), and thus
the density variation of the gas, occurs are big compared fo
the mean free path (average distance that gas molcules travel
without collisions).

TZThe perturbation fronts are planes and the displacement
induced in the gas, X, depends only on x & t (and not ony, z).

Wave equation Seismic Wave physics
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The conventional unit for pressure is bar=10°N/m? and the
pressure at the equilibrium is: 1atm=1.0133bar

The pressure perturbations associated to the sound wave
passage are typically of the order of 10-7bar, thus very small
if compared to the value of pressure at the equlibrium.

One can thus assume that:
P=Py+AP p=py+Ap

where AP and Ap are the values of the (small) perturbations
of the pressure and density from the equlibrium.

Wave equation Seismic Wave physics
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Sound wave equation - 1

G'he gas moves and causes density variaﬁons}

Let us consider the displacement field, s(x,t) induced by sound

old volume __hew volume
| |
| | —
X X+AX x+s(x,t) X+Ax+s(x+Ax,1)

and considering a unitary area perpendicular to x, direction of propagation, one
has that the quantity of gas enclosed in the old and new volume is the same

PoAX = p[x +AX +s(X +AX) - x - s(x)]

. . )
where, since Ax is small, s(x+ Ax) = s(x) + 93 Ax
dX

= PoAX + g 9s AX + ApAX + ...
X

AX + a—sAx
0X

PoAX = (py + Ap)

Wave equation Seismic Wave physics
10



relation between the variation of displacement along x with
the density variation. The minus sign is due to the fact that,
if the variation is positive the volume increases and the
density decreases.

If the displacement field is constant the gas is simply
translated without perturbation.

Wave equation Seismic Wave physics
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@ensity variations cause pressure variations)

The pressure in the medium is related to density with a
relationship of the kind P=f(p),
that at the equilibrium is Py=f(po).

P =Py + AP = f(p) = f(pg + Ap) = f(po) + Apf'(pg) = Py + Apx

and neglecting second-order terms:

AP = kAp

0 =|
K—f(po)—(dp)o

Seismic Wave physics
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NI The gas in the volume is accelerated by the
— . “_ different pressure exerted on the two sides...

— e 5P o(P, + AP AP
e T P ) -P(x+AX,T)= - —Ax=- (P + )Ax=——Ax
e el dX dX dX

Ce b, 0°s |
...... - = poAx— for Newton's 2nd law
x x-kdx a.‘.

thus:

9°s  OAP
012 IX

Po

Wave equation Seismic Wave physics
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Using 1, 2 and 3 we have

| K|—p 0
o’s AP _ G(KAP) | ox)

a’rz_ IX 9X IX
thus:
4 19°s s
K 0t°  9x°

i.e. The typical wave equation, describing a perturbation
traveling with velocity |, _ \/;

Wave equation Seismic Wave physics
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From the sound wave equation

Newton computed the derivative of the pressure assuming
that the heat is moving from one to another region in a such
rapid way that the temperature cannot vary - isotherm
PV=constant i.e. P/p=constant, thus
V= dap = \/(cons TanT) = P
dp g > e

called isothermal sound velocity

Wave equation Seismic Wave physics
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Sound wave velocity - adiabatic &

S——

Laplace correctly assumed that the heat flux between a
compressed gas region to a rarefied one was negligible, and,
thus, that the process of the wave passage was adiabatic
PVi=constant, P/pr=constant, with y ratio of the specific
heats: C,/C,

- \(33 = \(l““ “‘”"py)o = V(E)o

called adiabatic sound velocity

Wave equation Seismic Wave physics
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Sound wave velocity in the air[\®

Using the ideal gas law
PV=nRT=NkT

one can write the velocity on many ways:

V= ﬁ= YP_V=/W\RT= yNkT= ﬂ= vyRT
P pV m Nmmo| m,. weigh'l'mol

showing that it depends on temperature only. If the “dry”
air is considered (biatomic gas y=7/5) one has:

v=331.4+0.6T_ m/s (temperature measured in Celsius)

Wave equation Seismic Wave physics
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n=1 m L=1(24
— 2
| 1 half-wavelength

2 half-wavelengths

n=3 X— §1.3(%9

3 half-wavelengths |

L=n(%)
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Sound speed

Sound velocity depends on the compressibility of the
medium.

If the medium has a bulk modulus B and density at the
equilibrium is p, the sound speed is: v = (B/p)!/2

that can be compared with the velocity of transversal waves

onh a string:
v = (F/u)!/?

Thus, velocity depends on the elastic of the
medium (B or F) and on inertial (p or u) properties

Wave equation Seismic Wave physics
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What is a wave? - 3

Small perturbations of a Linear Harmonic
stable equilibrium point restoring force Oscillation

the disturbances can
— > propagate, superpose
and stand

Coupling of
harmonic oscillators

WAVE: organized propagating imbalance,
satisfying differential equations of motion

07y 1 azy
ve ate

General form of LWE

Fabio Romanelli Seismic Wave physics
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(Seismic) wave propagation

Basic physical concepts
What is a wave?
Discrete and continuous models
Born of wave equation

Dispersion
discreteness
stiffness
geomeftry
boundaries




S Dispersion relation )

SS——

Mln classical mechanics, the Hamiltons principle the perturbation
scheme applied to an averaged Lagrangian for an harmonic wave field
gives a characteristic equation: A(w,ki)=0

Transverse wave in a string

px: " P
—-=—)0=0= w==xkc
( ox> F ot? » W
/\
Acoustic wave
’  p o
2 _P% y-o0 - zke
( x> B ot? A 0
. . D>
Longitudinal wave in a rod k
¥ p &
L PY Y- 0= w=zxke
( ox® E oat° A
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Dispersion relation

Mln physics, the dispersion relation is the relation between the energy of
a system and its corresponding momentum. For example, for massive
particles in free space, the dispersion relation can easily be calculated
from the definition of kinetic energy: £ 1, p°

—mv- = —
2 2m

lZFor electromagnetic waves, the energy is proportional to the frequency
of the wave and the momentum to the wavenumber. In this case,
Maxwell's equations tell us that the dispersion relation for vacuum is
linear: m=ck.

lZThe name "dispersion relation" originally comes from optics. It is
possible to make the effective speed of light dependent on wavelength
by making light pass through a material which has a non-constant index
of refraction, or by using light in a non-uniform medium such as a
waveguide. In this case, the waveform will spread over time, such that a
narrow pulse will become an extended pulse, i.e. be dispersed.

Dispersion Seismic Wave physics
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Dispersion. ..

IZIn optics, dispersion is a phenomenon that causes the separation of a wave into
spectral components with different wavelengths, due to a dependence of the
wave's speed on its wavelength. It is most often described in light waves, but it
may happen to any kind of wave that interacts with a medium or can be confined
to a wavequide, such as sound waves. There are generally two sources of
dispersion: material dispersion, which comes from a frequency-dependent
response of a material Yo waves; and waveguide dispersion, which occurs when
the speed of a wave in a waveguide depends on its frequency.

M In optics, the phase velocity of a wave v in a given uniform medium is given by:
v=c/n, where c is the speed of light in a vacuum and n is the refractive index of
the medium. In general, the refractive index is some function of the frequency
of the light, thus n = n(f), or alternately, with respect to the wave's wavelength
n = n(A). For visible light, most transparent materials (e.g. glasses) have a
refractive index n decreases with increasing wavelength A (dn/dA<O, i.e.
dv/dA>0). In this case, the medium is said to have normal dispersion and if the
index increases with increasing wavelength the medium has anomalous dispersion.

Dispersion Seismic Wave physics
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Group velocity L)

[ Another consequence of dispersion manifests itself as a temporal effect. The
phase velocity is the velocity at which the phase of any one frequency
component of the wave will propagate. This is not the same as the group
velocity of the wave, which is the rate that changes in amplitude (known as
the envelope of the wave) will propagate. The group velocity vy is related to the
phase velocity by, for a homogeneous medium (here A is the wavelength in
vacuum, not in the medium):

4 -1 N\
V,=C n—x@ =v—7\ﬂ
dA dA

- J

and thus in the normal dispersion case
Vg is always < v |

Dispersion Seismic Wave physics
25



Dispersion. ..

IZThe group velocity itself is usually a function of the wave's frequency. This
results in group velocity dispersion (6VD),that is often quantified as the group
delay dispersion parameter (again, this formula is for a uniform medium only):
If D is less than zero, the medium is said to have positive dispersion. If D is
greater than zero, the medium has negative dispersion.

[

D = an
c | da?

Group velocity Phase velocity Fhase velocity

- C
Co n,

Ci Airy Phase -
wave that arises if the phase and the
change in group velocity are stationary
Group velocity and gives the highest amplitude in
terms of group velocity and are
prominent on the seismogram.

TA p 4 wh

2 4
= 4
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Dispersion examples

[ Discrete systems: lattices

[A Boundary waves: plates and rods

Discontinuity interfaces are intrinsic in
their propagation since they allow to
store energy (not like body waves)!

[A stiff systems: rods and thin plates

Dispersion Seismic Wave physics
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© Dispersion in lattices

SS——

Monatomic 1D lattice - continued

Now let us attempt a solution of the form: u = Ag!(xa=at)

where x, is the equilibrium position of the n-th atom so that x,= na. This equation represents

a traveling wave, in which all atoms oscillate with the same frequency » and the same
amplitude A and have a wavevector k. Now substituting the guess solution into the equation
and canceling the common quantities (the amplitude and the time-dependent factor) we obtain

M(—CI)Z )eikna — _C[zeikna . eik(n+1)a . eik(n—1)a].
This equation can be further simplified by canceling the common factor e*"a@ | which leads to
- - . o ka
Mao® = C(2-€" —e ™) = 2C(1-cos ka) = 4C sin’ o

. . —
. . . . | (L) =/4¢c/
We find thus the dispersion relation L max =/ 4 ¢ mJ
. __mmax
for the frequency: ﬂ /\ / N a\ /\
4C | . ka A Y A / N
=, ,[—|[SIN— it l\lkl { \ / / \ | \ / \
M 2 X I|1 Fl'l ‘I"I Iu'l \I Il" ",ll I,lIll II|III IllIIll l’u,l
[ (I b Vol | |,l | |
. . . . / ll'n "I lll -'I I'l, I l. \I I'I III|
which is the relationship between the *.H [ “.,I / f \ ,"" \ \\
frequency of vibrations and the ! / V | ) \ | .
H H . - / = & - 2 ! d b / d -"I-
wavevector k. The dispersion relation = */®  ~#e sl 0 s e
has a number of important properties. e
1st Brillouin zone

Seismic Wave physics
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SS——

Monatomic 1D lattice — continued |

Phase and group velocity. The phase velocity is defined by
dw

V. = ? and the group velocity by v = — K
p g 0 Ta

The physical distinction between the two velocities is that v, is the velocity of propagation

of the plane wave, whereas the v, is the velocity of the propagation of the wave packet.

The latter is the velocity for the propagation of energy in the medium. For the particular

2
dispersion relation = /% sink—za the group velocity is given by v, = Ca cosﬁ.
2
Apparently, the group velocity is zero at the edge of the zone where k = + n/a. Here the

| wave is standing and therefore the transmission velocity for the energy is zero. |

Long wavelength limit. The long wavelength limit implies that A >> a. In this limit ka << 1.

We can then expand the sine in ‘o * and obtain for the positive frequencies: w = \/%ka.
We see that the frequency of vibration is proportional to the wavevector. This is
equivalent to the statement that velocity is independent of frequency. In this case:

0] C This is the velocity of sound for the one dimensional lattice|which is
Vv a. : : : : : ]
Pk M consistent with the expression we obtained earlier for elastic waves.

Dispersion Seismic Wave physics
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SS——

Monatomic 1D lattice — continued

Finite chain — Born — von Karman periodic boundary condition.
Unlike a continuum, there is only a finite number of distinguishable vibrational modes. But
how many?

Let us impose on the chain ends the Born — von Karman periodic boundary conditions
specified as following: we simply join the two remote ends by one more sprlng in a rlng or
device in the figure below forcing atom N to interact with ion 1 via a e
spring with a spring constant C. If the atoms occupy sites a, 2a, ..., Na
The boundary condition is uy . 1= Uy Or uy= Up.

With the displacement solution of the form + o 890
u, = Aexpli(kna-wt)], the periodic boundary - -
condition requires that exp(+ikNa) = 1, e e-g
which in turn requires ‘k’ to have the form: + o ¢
27 n N N

k=—— (n—-aninteger), and —-—<n<—, or O ® =

27 A 6r T ~ o e 0 @ —

Dispersion Seismic Wave physics
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&) Diatomic 1D lattice ©

We can treat the motion of this lattice in a similar fashion as for the monatomic lattice.
However, in this case, because we have two different kinds of atoms, we should write two
equations of motion: "y

1 dtz

d2un+
M2 721 = _C(zun+1 —U,, U, )

= _C(Zun —Up— un—1)

In analogy with the monatomic lattice we are looking for the solution in the form of
traveling mode for the two atoms:

ikna
u, Ae ot o f
= K(nsna e in matrix form.
un+1 Aze

Substituting this solution into the equations of the previous slide we obtain:
2C-M,»* -2Ccoska {A@
—2Ccoska 2C-M,o” |4

This is a system of linear homogeneous equations for the unknowns A, and A,. A nontrivial
solution exists only if the determinant of the matrix is zero. This leads to the secular equation

(2C -M,0*)(2C - M,0") - 4Ccos® ka = 0.

Dispersion Seismic Wave physics
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This is a quadratic equation, which can be readily solved:

2 . 2 ' .
> :C[iJrijic\/[iJrij _4sin” ka i __Epn-:al
M, M, M, M, M.M, - —

_—— ——

Depending on sign in this formula there are two =
different solutions corresponding to two different
dispersion curves, as is shown in the figure:

Acoustic

The lower curve is called the acoustic branch,
while the upper curve is called the optical branch. _m/2a 0 ' 2a

The acoustic branch begins at k=0 and o =0, C

: 0)= -ka
andask = 0 @,(0) \/2(M1+M2)

With increasing k the frequency
increases in a linear fashion. This

is why this branch is called acoustic:
it corresponds to elastic waves, or

sound. Eventually, this curve saturates 1 1
o, = [2C ( ]

at the edge of the Brillouin zone. — 4+ —
On the other hand, the optical branch 1 M2
Has a nonzero frequency at zero k, and it does not change much with k.
Dispersion Seismic Wave physics
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Another feature of the dispersion curves is the existence of a forbidden gap between
w, = (2C/IM,)"? and w, = (2C/M,)'? at the zone boundaries (k = + 17/2a).
The forbidden region corresponds to frequencies in which lattice waves cannot propagate
through the linear chain without attenuation. It is interesting to note that a similar situation
also exists in the energy band scheme of a solid to be discussed later.

The distinction between the acoustic and optical branches of lattice vibrations can be seen

most clearly by comparing them at k = 0 (infinite wavelength). As follows from the equations

of motion, for the acoustic branch @ =0 and A, = A,. So, in this limit the two atoms in the cell

have the same amplitude and phase. Therefore, the molecule oscillates as a rigid body, as
shown in the left figure for the acoustic mode.

_— _------"'*-\._\_\__. Acoustic
o O————— 8>
optical made
o — - e _\--H"'ﬂ- D . 1
ey T tica
e OO @ — O T

acustical made

On the other hand, for the optical vibrations, by substituting «, we obtain for k = O:

M.,A, +M,A, =0 (M,/M, =-A,IA,).
This implies that the optical oscillation takes place in such a way that the center of mass of
a molecule remains fixed. The two atoms move in out of phase as shown. The frequency of
these vibrations lies in the infrared region (102 to 10'* Hz) which is the reason for referring

to this branch as optical. If the two atoms carry opposite charges, we may excite a standing
wave motion with the electric field of a liaht wave.

Dispersion Seismic Wave physics
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Acoustic and optical modes

Diatomic chain

acoustic transverse mode

Monoatomic chain
acoustic longitudinal mode

Monoatomic chain
acoustic transverse mode

Diatomic chain
optical transverse mode

Dispersion
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Dispersion examples

[A Discrete systems: lattices

[ Boundary waves: plates and rods

Discontinuity interfaces are intrinsic in
their propagation since they allow to
store energy (not like body waves)!

[A stiff systems: rods and thin plates

Dispersion Seismic Wave physics
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Apparent horizontal velocity

Surface

Wave
vector

Wave front

k, = ksin(i) = o3 _ ©

o C
2 2
k, = kcos(i) = k2 - k2 = w\/(lj - (1) -2
o C

In current terminology, k is k!
X

Dispersion
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‘SISH Waves in plates: Geometry\&

In an elastic half-space no SH type surface waves exist. Why?

Because there is total reflection and no interaction between an evanescent P wave
and a phase shifted SV wave as in the case of Rayleigh waves. What happens if we
have a layer delimited by two free boundaries, i.e. a homogeneous plate?

Repeated reflection in the layer allow interference between incident and reflected
SH waves: SH reverberations can be totally trapped.

Dispersion Seismic Wave physics
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u, = Aexpli(ot +krz - kx)] + B exp[i(wt - kryz - kx)]

The formal derivation is very similar to the derivation of the Rayleigh waves. The
conditions to be fulfilled are: free surface conditions

0
0,(0) = 1| = ikryufAexpli(ot - kx)]- B expli(wt ~kx)]} = 0
0Z
0
o, (2h) = Zizy - ikrﬁu{A expli(wt +kr,2h—kx)] - B exp[i(wt - kr,2h - kx)]} -0
2h
Dispersion Seismic Wave physics
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EM waveguide animations
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Acoustic wavegquides. ..
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Sound speed as a function of depth at a position
north of Hawaii in the Pacific Ocean derived from
the 2005 World Ocean Atlas. The SOFAR channel
axis is at ca. 750-m depth.
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Dispersion examples

[A Discrete systems: lattices

[A Boundary waves: plates and rods

Discontinuity interfaces are intrinsic in
their propagation since they allow to
store energy (not like body waves)!

[ Stiff systems: rods and thin plates

Dispersion Seismic Wave physics
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) Stiffness...

S——

\&-;;;

[ How "stiff" or "flexible” is a material? It depends on whether we
pull on if, twist if, bend it, or simply compress it. In the simplest case
the material is characterized by two independent “stiffness
constants” and that different combinations of these constants
determine the response to a pull, twist, bend, or pressure.

|

compression

1

Euler Bernoulli equation

———

tension

W

4 2 T
0 A 0 I
(—4—p——2)w=0=> (D=ik2E—
ox* EI ot pA

D>
K
Dispersion Seismic Wave physics
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Stiffness...

MSTiffness in a vibrating string introduces a restoring force proportional to the
bending angle of the string and the usual stiffness term added to the wave
equation for the ideal string. Stiff-string models are commonly used in piano
synthesis and they have to be included in tuning of piano strings due to

inharmonic effects.

1/2
4 2 2
(é)—+E T _PAD wW=0= w==xKk E(1+k2\/§]

ax* pox® EI ot® P

TUNING FROM ACTUAL PIANO

AAAAAAAAAAAAAAAAAAA

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Seismic Wave physics
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Waves in plates

In low frequency plate waves, there are two distinct type of harmonic motion. These
are called symmetric or extensional waves and antisymmetric or flexural waves.

] ¢ =c(w) ® zznf(r;d/ie(guency ¢ = f(v)explik(x —ct)]
NN v = g(v)explik(x —ct)]

extensional waves

f = Acosh(ay)
g = Bsinh(fy)

(a)

flexural waves

f = A'sinh(ay)
g = B'cosh(fy)

Dispersion Seismic Wave physics
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satisfying the boundary conditions 7,, =7,, = 0
on Y=%h gjves the Rayleigh-Lamb equations:

) +
tanh(ﬂh): do”af + ... extensional waves
tanh(ah) | 2 (wz /& + Igz)z - ... flexural waves
> >
) c ) c
a=—"Ll1-—= ,pf="hl-—=
C c, C c;

Dispersion Seismic Wave physics
47



consider the extensional waves

tanh 27th\/1/cz—1/cs2 4\/1_02/65\/1—c2/c;

tanh_27zjh\/l/cz—1/c§ (2—02/6}2)2

27fh

c

If welet kh= >>1  (high frequency)

then both tanh functions are =~ ]

and we find (2—02 /csz)2 = 4—\/1—02 /Cf\/l—cz/clz,
so we just have Rayleigh waves on both stress-free surfaces:

-
7L_.

Dispersion Seismic Wave physics
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In contrast for k4 <<1 (low frequency)
tanh(ah)= ah
wetind o h(gh)= g

and the Rayleigh-Lamb equation reduces to

(2—02/63)2 =4(1—cz/c§)

which can be solved for ¢ to give

B B E
C= Cplate - \/,O(l _ V2)

Dispersion
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In low frequency plate waves, there are two distinct type of harmonic motion. These
are called symmetric or extensional waves and antisymmetric or flexural waves.

14 T

12+

10+

Q.

c (km/s)

6 }-
( Longifudinalmds

Rayleigh
4+ wave |
1| —— N e e —

2 /// - Symmetrical Modes
(Flexural waves in thin plm‘es) — Antisymmetrical Modes
0 ( 1 1 L A 1 | L |
0 1 2 3 4 5 6 7 8 9 10
f-d (MHz-mm)
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Lamb waves

Lamb waves are waves of plane strain that occur in a free plate, and the traction force
must vanish on the upper and lower surface of the plate. In a free plate, a line source
along y axis and all wave vectors must lie in the x-z plane. This requirement implies
that response of the plate will be independent of the in-plane coordinate normal to the
propagation direction.

LEttr

ILF’._PDII?—:'

1

5
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Elastic waves in rods

Three types of elastic waves can propagate in rods: (1) longitudinal waves, (2)
flexural waves, and (3) torsional waves. Longitudinal waves are similar to the
symmetric Lamb waves, flexural waves are similar to antisymmetric Lamb waves,
and torsional waves are similar to horizontal shear (SH) waves in plates.

i .
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Lo & as & as
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§ 2 E 25 E 25
% ? : 2 : 2
“X .gu .gts
1
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What is a wave? - 4

Small perturbations of a Linear Harmonic
stable equilibrium point restoring force Oscillation

the disturbances can
— > propagate, superpose,
stand, and be dispersed

Coupling of
harmonic oscillators

WAVE: organized propagating imbalance,
satisfying differential equations of motion

Organization can be destroyed,

. . when interference is destructive strong
non linearity scattering

Turbulence Diffusion

Fabio Romanelli Seismic Wave physics
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Classification of Partial Differential Equations (PDE)

Second-order PDEs of two variables are of the form:

o'f f(x, ' f(x, of( x, of(x,
) g Hxy) | FHloy) | gotey) | ofy) g
dx Xy Jy 0X y
b —4ac<0 elliptic LAPLACE equation
b’ —4ac=0 parabolic DIFFUSION equation
b’ —4ac>0 hyperbolic WAVE equation

Elliptic equations produce stationary and energy-minimizing solutions
Parabolic equations a smooth-spreading flow of an initial disturbance

Hyperbolic equations a propagating disturbance

PDE Seismic Wave physics
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Initial conditions: starting point for

propagation problems R

Boundary conditions: specified on
domain boundaries to provide the R
interior solution in computational

domain s‘j
n

(i) Dirichlet condition :# = f on oR

(ii) Neumann condition :a_u = f or ou =g on JR

on 0s

(iii) Robin (mixed) condition :3—” +ku = f on oR
n

PDE Seismic Wave physics
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Wave Equation

Hyperbolic Equation
b2 - 4ac = 0 - 4(1)(-c2) > O : Hyperbolic

8 4 Vza—u, O<sx=<a, O=<t

9 t° 9 X°

ICs <u(X’O)=f1(X) O<x=<a
u (x,0)=1,(x)

B.Cs <u(0,t)=g1(t) t>0
ku(aa t) = g2(t)

PDE

Seismic Wave physics
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Elliptic PDEs

Steady-state two-dimensional heat conduction
equation is prototypical elliptic PDE

Laplace equation - no heat generation

0°T

J x’

-+

o°T

0
ayz

Poisson equation - with heat source

-+

0°T 0°T

dx’ 0dy

2 = f(x,y)

PDE

Seismic Wave physics
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Heat Equation: Parabolic PDE

Heat transfer in a one-dimensional rod

1O PO ez
8_u=dﬁ, O<sx=a, O=st=<T
ot  9x°

[Cs u(x,0)=1f(x) O=x=a
u(0,t) =g, (1)
u(a,t)=g,(t)

B.Cs - O<t<T

PDE Seismic Wave physics
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—+—=10

ox ay

ou du  du 1 dp 0°’u 0’u
d—+Uu—+v—=———"—+v —+—
ot o0x oy p ox ox oy

9’y 9’y

ox’ ay’
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Fluids. ..

The space occupied by the material will be called the
domain.

gSolids are materials that have a more or less
intrinsic configuration or shape and do not conform
to their domain under nominal conditions.

gFluids do not have an intrinsic shape; gases are
fluids that will completely fill their domain (or
container) and liquids are fluids that form a free
surface in the presence of gravity.

Navier-Stokes Seismic Wave physics
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IZClassical fluid mechanics, like classical thermodynamics, is concerned
with macroscopic phenomena (bulk properties) rather than
microscopic (molecular-scale) phenomena.

IZThe molecular makeup of a fluid will be ignored in all that follows, and
the crucially important physical properties of a fluid, e.g., its mass
density, p, and specific heat, Cp, among others, must be provided
from outside of this theory. It is assumed that these physical
properties, along with flow properties, e.g., the pressure, P, velocity,
v, femperature, T, etc., are in principle definable at every point in
space, as if the fluid was a smoothly varying continuum, rather than a
swarm of very fine, discrete particles (molecules).
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Continuity equation

@onservation of matter )

The total mass of fluid flowing, in unit of time, through a surface S, has to be equal to the
decrease, in unit time, in the mass of fluid in the volume V:

0
dS=-—| pdV
gSPV anp

WP, div(pv) = P, pdiv(v)+v-grad(p)=0
ot ot

that can be compared with what we obtained considering 1D sound waves:

0s

Ap =—Pg— The gas moves and causes density variations

0X
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S Momentum. .. ©

@ewton's law ) The fluid in the volume is accelerated by the total force
acting on it:

p = —( grad(P)}- pgrad(¢) + f,..

Fluid moves from high-pressure areas to low-pressure areas. Moving implies that fluid
moves in direction of largest change in pressure

External forces that act at a distance; we can suppose that they are conservative (like
gravity and electricity)

Internal force due to the fact that in a flowing fluid there can also be a shearing
stress, and it is called the viscous force

Navier-Stokes Seismic Wave physics
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Momentum...

The fluid in the volume is accelerated by the total force
acting on it:

p;—"‘; - —grad(P) - pgrad(¢) + f,..

that can be compared with what we obtained considering for 1D sound waves:

°s  OAP
Po——=—"—"—
ot dX

Pressure variations generate gas motion

Navier-Stokes Seismic Wave physics
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Advection

In mathematics and continuum mechanics, including fluid
dynamics, the substantive derivative (sometimes the
Lagrangian derivative, material derivative or advective
derivative), written D/Dt, is the rate of change of some
property of a small parcel of fluid.

Note that if the fluid is moving, the substantive derivative is
the rate of change of fluid within the small parcel, hence the
other names advective derivative and fluid following
derivative. Advection is transport of a some conserved scalar
quantity in a vector field.

vxﬁ+vyﬁ+vzﬁ= v -grad(f)

0X oy d0Z
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Euler equations

[a—ﬁ(v-w)w—f“‘”—ww} )

ot 0

Using the identity ~ (v-grad)v = (rotv) x v+ % grad(v®)

and defining the vorticity as r'QN = g

@+PO‘P(QX v)=0 =2

ot

Navier-Stokes Seismic Wave physics
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N Equation of state

The functional relationship between density, pressure and temperature:

P=P(p,T) or equivalently, p=p(P, T)

with T the absolute femperature in Kelvin.

The archetype of an equation of state is that of an ideal gas, P=pRT/M

where R=8.31 (Joule moles™ K1) is the universal gas constant and M is the molecular
weight (kg/mole).

If the composition of the material changes, then the appropriate equation of state will
involve more than three variables, for example the concentration of salt if sea water, or
water vapor if air.

An important class of phenomenon may be described by a reduced equation of state
having state variables density and pressure alone,

P:P(p) or equivalently, 0 = p(P)

and the fluid is said to be barotropic.
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l@ iEquation of state - bcnr'O'rr'opic:‘I ) I

The temperature of the fluid will change as pressure work is done on or by the fluid, and yet
temperature need not appear as a separate, independent state variable provided conditions
approximate one of two limiting cases:

1) If the fluid is a fixed mass of ideal gas, say, that can readily exchange heat with a heat
reservoir having a constant temperature, then the gas may remain isothermal under pressure
changes;

2) the other limit, which is more likely to be relevant, is that heat exchange with the
surroundings is negligible because the time scale for significant conduction is very long
compared to the time scale (lifetime or period) of the phenomenon. In that event the system
is said to be adiabatic and in the case of an ideal gas the density and pressure are related by
the well-known adiabatic law.

d
Ap = WP Ap
that can be compared with what we obtained considering sound waves:

AP =K Ap — CZ Ap Density variations cause pressure variations
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Incompressible fluids

In many cases of the flow of fluids their density may be
supposed invariable, i.e. constant throughout the volume and its p = constant
motion and we speak of incompressible flow

Conservation of matter div (v)=0
J 1 P
Euler equation e +Qx Vv =-grad| = Vet —+ 0
at 2 0

The conditions under which the fluid can be considered incompressible are:

a—p<<pdiv(v)=>&<<ﬂ
ot T A }\‘
i.e. T>> —

AP 1 ( oav 1( v

Ap=—="—|p—AN|=—[p—A
¢t 2\ ot A\ = C
i.e. v<<C

i.e. the tfime taken by a sound signal o traverse distances must be small compared with
that during which flow changes appreciably
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Long 6ravity waves

Having considered gravity waves whose length is small compared with the depth of
the liquid, let us now discuss the opposite limiting case of waves whose length is large
compared with the depth. These are called long waves.

Let us examine the propagation of long waves in a channel that is supposed to be along
the x-axis, and of infinite length. The cross-section of the channel may have any
shape, and may vary along its length. We denote the cross-sectional area of the liquid
in the channel by S = S(x,t). The depth and width of the channel are supposed small in
comparison with the wavelength.

We shall here consider longitudinal waves, in which the liquid moves along the channel.
In such waves the velocity component vx along the channel is large compared with the
components vy, v;. We denote vx by v simply, and omit small terms.

Fabio Romanelli Seismic Wave physics
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Viscosity

Viscosity is a measure of the resistance of a fluid to deform under shear
stress. It is commonly perceived as "thickness", or resistance to pouring.
Viscosity describes a fluid's internal resistance to flow and may be thought of
as a measure of fluid friction. Thus, water is "thin", having a lower viscosity,
while vegetable oil is "thick" having a higher viscosity. All real fluids (except
superfluids) have some resistance to shear stress, but a fluid which has no
resistance to shear stress is known as an ideal fluid

» dimension

boundary plate (2D) 4 ‘
(moving) velocity, u

shear stress, T

Fluid gradient, **
E

PETIIETT TSI ALl
boundary plate (2D)
(stationary)
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©) Strain as a measure of ©)

To understand deformation due to shear, picture two flat plates with a fixed
spacing, h, between them:

WETTED AREA = A

———

dx —— ~
i -@

Fluids are qualitatively different from solids in their response to a shear stress.
Ordinary fluids such as air and water have no intrinsic configuration, and hence fluids
do not develop a restoring force that can provide a static balance to a shear stress.
When the shear stress is held steady, and assuming that the geometry does not
interfere, the shear deformation rate, may also be steady or have a meaningful time-
average.
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Newton's Law of Viscosity @

This is called a "flow curve"

The proportionality constant is the viscosity

. The deformation of a

Newton's law of viscosity T=N—="N— material is due to stresses
dY dt imposed to it.

Newtonian fluids Fluids which obey Newton's law:

Shearing stress is linearly related to the rate of shearing strain.

The viscosity of a fluid measures its resistance to flow under an applied
shear stress.
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Newtonian Fluids

Viscosity of Newtonian fluids depends only on

temperature and pressure, e.g.:

AE
R

To-T
ToT

n(T,P) = Nye eB(P_PO)

Where:, :viscosity at T and P, (reference temperature and pressure)

AE: activation energy for flow
R: gas constant

p: material property [m2/N]
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The structure of some polymers, especially filled polymers or concentrated suspensions can

be sufficiently rigid that it permits the material to withstand a certain level of deforming
stress without flowing. The maximum stress that can be sustained without flow is called the

“yield stress” and this type of behavior is called “plasticity”

Tt ¢ Pseudoplastic

vy =0 for t<t,

Plastic

T, T=T,+My for t=T1,
Newtonian
ideal
Navier-Stokes Seismic Wave physics
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Viscosity

Viscosity is a measure of the resistance of a fluid to deform under shear stress. It is
commonly perceived as "thickness", or resistance to pouring. Viscosity describes a
fluid's internal resistance to flow and may be thought of as a measure of fluid friction.
Thus, water is "thin", having a lower viscosity, while vegetable oil is "thick" having a
higher viscosity. All real fluids (except superfluids) have some resistance to shear
stress, but a fluid which has no resistance to shear stress is known as an ideal fluid

» dimension

A

boundary plate (2D)

(moving) velocity, u

-

»

shear stress, T
< > >

Fluid

gradient,
»

/ o 4 G A A .
I LILSL LS /

(stationary)

AL LT Far & o o
oundary plate (2D)

. AF  dv,
lim — =1
A—=0 AA ay
thus the shear stress is
proportional to the v, v,
| +
rate of change of shear
: dX dy
strain

Navier-Stokes
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"@ IViscosify - compressible fluids| @‘ I

In the general case there is another term that depends on other derivatives of the
velocity and the general expression is:

n(f"’y R ‘9"] 18, (div(v))

X  dy

so two constants are required: the “first coefficient of viscosity” or “shear viscosity
coefficient” and "second coefficient of viscosity" .

The component of the viscous force per unit volume in the direction of the rectangular
coordinate x;j is:

oT.. 0V,
(Fuscd= 30w 3 P 2 il 2 (ydiviv)

J=1'3axj J=1,3axj é‘XJ axi 8Xi

fisc = AV + (1 +17)grad|div(v))
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Newton's law Conservation of matter + @iscosi'ry)

-~

pZ—: +p(v-grad)v = ~grad(P) - pgrad(¢) +
+NAV + (n + n’)grac(div(v))

and in the incompressible case...

[ E+r'o’r(£2><\¢)=BA§2 }

ot )
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Elasticity...

A the study and determination of the response of

continuous, perfectly elastic solids subjected to

applications of forces

“Quasistatic”
Inertia forces neglected

< Creep "Static”

P |

“Dynamic”
Inertia forces included

Wave propagation

Rapid Impulse —

>

107 Strain rate (s!) 10°

Fabio Romanelli
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Extinction and emission are two main types of the interactions
between an electromagnetic radiation field and a medium (e.g., the

atmosphere).
Extinction is due to absorption and scattering.

Absorption is a process that removes the radiant energy from an
electromagnetic field and transfers it to other forms of energy.

Scattering is a process that does not remove energy from the
radiation field, but redirect it. Scattering can be thought of as
absorption of radiant energy followed by re-emission back to the
electromagnetic field with negligible conversion of energy, i.e.can
be a "source” of radiant energy for the light beams traveling in

other directions.
Scattering occurs at all wavelengths (spectrally not selective) in

the electromagnetic spectrum, for any material whose refractive
index is different from that of the surrounding medium (optically
inhomogeneous).
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Scattering of EM wavefield (1) |

The amount of scattered energy depends strongly on the ratio of:
particle size (a) to wavelength (\.) of the incident wave

When (a < A/10), the
scattered intensity on
both forward and
backward directions are
equal. This type of
scattering is called
Rayleigh scattering.

For (a > 1), the angular
distribution of scattered
intensity becomes more
complex with more
energy scattered in the
forward direction. This
type of scattering is
called Mie scattering

Rayleigh Scattering Mie Scattering Mie Scattering,
. larger particles
¥ \5$f adl
-—
5,

Y

———— Direction of incident light

Mie Scattering

From overhead. the Rayleigh
scattering is dominant, the
Mie scattered intensity being
projected forward. Since

! Rayleigh scattenng stronaly

i favors short wavelengths, we

", see a blue sky.
Mig

1

1

1

{

%

When there is large particulate matter in S
the air, the forward lobe of Mie scattering 1 Ohsemver
is dominant. Since it is naot very wavelength
dependeant, we see a white glare around the sun,

Scattering
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Scattering of EM wavefield (2)

10 T R A S i I T o 2 T A
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L1 i
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&
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< = 3
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Single Scattering
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FIGURE3.18. Scattering regimes. [Adapted from Wallace and Hobbs (1977). Reprinted by permission
of Academic Press.]

For (a >> A), the
Scattering
characteristics are
determined from
explicit Reflection,
Refraction and
Diffraction:
Geometric "Ray"
Optics
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‘SNl Scattering of EM wavefield (3) \&

Composition of the scatterer (n) is important!

The interaction (and its redirection) of electromagnetic radiation with matter
May or may not occur with transfer of energy, i.e., the scattered radiation has a slightly
different or the same wavelength.

Rayleigh scattering -
Light out has same
frequency as light in,
with scattering at many
different angles.

7\

exciting %

light \ 2
molecule molecule

vibrates

Before ... After ...
licht
exciting
light g g out
molecule molecule

Raman scattering - Light is
scattered due to vibrations in
molecules or optical phonons
in solids. Light is shifted by as
much as 4000 wavenumbers
and exchanges energy with a
molecular vibration.

light
out

Scattering
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‘SNl Scattering of EM wavefield (4)

scattering medium

Rayleigh scattering
scattering from nonpropagating density
fluctuations (elastic)
Brillouin scattering
scatlering from propagating pressure waves
{sound waves, acoustic phonons)
< Raman scattering
scattered light interaction oflig]'n W i.th \'i!)mtionn] modes of
molecules or lattice vibrations of crystals
(scattering from optical phonons)

spectrally resolved detection

Stokes anti-Stokes
Raman Raman

A

Rayleigh Raman scattering
Brillouin
1 N Stokes o anti-Stokes Oy Phonons
, O quanta of the ionic
AAAAVAY 2 displacement field in a solid
I w,, 0)') % o,
phonon dispersion curve
v optical phonon .
(k)
4

3
optical
Brillouin scattering /\

oy ‘""'"S;F (O acoustic
VAVAVATAVAY =

4 ®,, @ % ., k

v acoustic phonon

v

Scattering
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Scattering and Absorption

When the photon is absorbed and re-emitted at a
different wavelength, this is absorption.

Transmissivity of the Earth's atmosphere

Mictowave

Thermal (emitted) IR

o
o

=% Atmospheric
yansmssion

Olem 10em 1.0m

Ll
+— H
) 10 20 100 pm

02 pm 06 1.0
Wavdengh (not o scde) :
Humen vision Imeging rada
A Thermal IR scanners KaBand
. - = .
Photog sphic cameras égﬂj
S-Band
Ekcroopliced sersors L-Band
- "~ P-Band
-

Passive mcrowee
-~
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Scattering and Diffusion

In single scattering, the properties of the scatterer are
important , but multiple scattering erases these effects -
eventually all wavelengths are scattered in all directions.

Sunlight
e TR O Works for turbid media: clouds,
Tava Yaval i AVt 4 A A
¥ htmospheric Particies. " beer foam, milk, etc...
§ s

I I
v Scattered Light

Example: when a solid has a very low temperature,
phonons behave like waves (long mean free paths) and

heat propagate following ballistic term.
At higher temperatures, the phonons are in a diffusive

regime and heat propagate following Maxwell law.
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The governing parameters for the seismic scattering are:

wavelength of the wavefield (or wavenumber k)

) (10°-10° m)

correlation length, or dimension, of the heterogeneity
a (10°-10° m)

distance travelled in the heterogeneity

L (10°-10° m)

With special cases:

- a=L homogeneous region

- a>» A ray theory is valid

* a= )\ strong scattering effects

Seismic wavefield Seismic Wave physics
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Seismic Scattering (1)

1x10° 1x10' 1x102 1x10® 1x10% 1x10°
gl wanul f [MEEET N REET Ll

10000 - : &
homogeneous ;
1000 i -1x10 .
media =X Wave propagation problems
; can be classified using the
100 - 1x10° parameters just
: intfroduced.
& 10 - 1x10]

This classification is
crucial for the choice of
L F1x10° technique to calculate

| synthetic seismograms

scattering regime

0.1 —1x10 . .
- (Adapted from Aki and Richards, 1980)
0.01 1x1072
1 10 100 1000 10000 100000
kL
Seismic wavefield Seismic Wave physics

94



Scattering in a perturbed model

Let us consider a perturbed model:
reference+perturbation (in elastic parameters)

P=pPg+€0P A=Ay+€ON W=yugy+eoU
resulting in a velocity perturbation
C=Cq + €0C

solution: Primary field + Scattered field
u=ugy+uy(8p,8n,0u)

satistying equations of motion:
ik _(7\0 +M0)(V'“O) —1Viu} =0
Pl —(KV-u),i —[u(ui,j +uj,i)],j =0
p i — (7»0 + MO)(V : ul),i -u,Vu =Q.
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Point Scatterers

How does a point-like perturbation of the elastic parameters affect

the wavefield?

Perturbation of the different
elastic parameters produce
characteristic radiation
patterns. These effects are
used in diffraction
tomography to recover the
perturbations from the
recorded wavefield.

(Figure from Aki and Richards, 1980)

Type
of
inhomogeneity

Primary P

Scattered P-wave

Scattered S-wave

oo

.

(ot

W :

Y
%

f"i(i;t)

Seismic wavefield
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Correlation distance

When velocity varies in all directions with a finite scale length, it is more convenient to
consider spatial fluctuations

Autocorrelation function (a is the correlation distance):

dc(r) dc(r + 1)

N(r,) - <C0(r) co(r +1; )> ) {e—rl/a

()

Power Spectra of scattered waves

2
k* (1 +4k?a’sin’ 9)
2 2
o)

o« k* if ka <<1 (Rayleigh scattering)
if ka is large (forward scattering)

k* exp(—k2a2 sin” %)
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Wave parameter

Energy loss through a cube of size L (Born approx1mat10n)

Al rk4a3L(1 + 4k*a? )_1
—

-1
I kzaL(l _eka’ )

but violates the energy conservation law and it is valid if (<0.1)

the perturbations (P &A) are function of the wave parameter:

b
ka
. {O phase perturbation

oo phase = amplitude

when D<1, geometric ray theory is valid
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Seismic Scattering (2)

1x10°0  1x10?  1x102 1x10® 1x10* 1x10°

10000-+—— s - 4 1x104
| f T - 1x10
homogeneous ‘
1000+ media D=1 | 1x103 .
ray 7" | Wave propagation problems
-7 I e, .
100 _#t — can be classified using the
L : parameters just
. g ' introduced.
x 10 o F1x10!
%, Scatteringregime | This classification is
AI/1=0.1", . .
1 . - 1x10° crucial for the choice of
T, i technique to calculate
[ een, i . .
01l equivalent """ e L 1y10°! SynThZTIC seismograms
homogeneous o
media i (Adapted from Aki and Richards, 1980)
0.01 | : ’ 1x1072
1 10 100 1000 10000 100000
kL
D=4L/ka?=4(kL)/(ka)?
wave parameter
Seismic wavefield Seismic Wave physics

99



From scattering....

Multiple scattering process leads to attenuation (spatial loss non a true dissipative one)
and energy mean free path

o(0) is the differential scattering cross-section and after a wave has travelled a
distance X, the energy is reduced by an amount of

e X ¥ = f o(cos0)dcosd

and the average path length between scattering events is

o0 1
l—ﬁ)e dx—2
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Towards random media

forward scattering tendency

> (0 forward
+1

>'= f_ 1(cos@)o(cos@)clcos@ ~ 0 isotropic
< 0 backward

Multiple scattering randomizes the phases of the waves adding a diffuse (incoherent)
component to the average wavefield.
Statistical approaches can be used to derive elastic radiative transfer equations

Diffusion constants
use the definition of a diffusion (transport) mean free path

_a” I =
3 -3
C
= 1 3 pp+2K2%
1+2K 3

for non-preferential scattering 1* coincides with energy mean free path, 1
for enhanced forward scattering 1*>1

d

(acoustic)

* *

(elastic)

Experiments for ultrasound in materials can be applied to seismological problems...
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Scattering in random media

Correlation length: 10km Correlation length: 20km
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How is a propagating wavefield affected by random heterogeneities?
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Synthetic seismograms

Synthetic seismograms for a global model
with random velocity perturbations.
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When the wavelength is long compared to the correlation length, scattering effects
are difficult to distinguish from intrinsic attenuation.
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Wave propagation problems
can be classified using the
parameters just
introduced.

This classification is crucial
for the choice of technique
to calculate synthetic
seismograms

(Adapted from Aki and Richards, 1980)
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What is a wave? - 5

Small perturbations of a Linear Harmonic
stable equilibrium point restoring force Oscillation
, the disturbances can
Coupling of

— > propagate, superpose,

harmonic oscillators
stand, and be dispersed

WAVE: organized propagating imbalance,
satisfying differential equations of motion

Organization can be destroyed,

. . when interference is destructive strong
non linearity scattering

Turbulence Diffusion
Exceptions

Solitons Phonons
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DISPERSION

AMPLIFICATION

OF

rC——

DISPERSION, AMPLIFICATION
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Dispersion & Non linearity

The dynamics of water waves in shallow water is described
mathematically by the Korteveg - de Vries (KdV) equation

u=u(x,t) measures the elevation at time t and position x,
i.e. the height of the water above the equilibrium level

Dispersive term

=0

u, +u

XXX

Nonlinearity

u,+uu, =0

KdV

u, +u,,+uu, =0

XXX
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