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1. Formulation

1.1.  Fluid dynamics starts with Euler's equations

�(r, t)
Dv(r, t)

Dt
= �• t(r, t) +�(r, t)F(r, t)      (1.1.1)

and the continuity equation

D�(r ,t)
Dt

+ �(r, t)�• v(r, t) = 0     (1.1.2)

to be solved in fluid volume V.

Here �(r, t) is density, v(r, t) =
�u(r , t)

�t
 is velocity, u(r , t) is displacement,

 t(r , t) is the stress tensor, F(r, t)  is body force per unit mass,

and D
Dt

=
�

�t
+ v(r, t) • �



  

1.2.  If stress linearly relates to strain and the fluid is inviscid, then the non-zero stress
tensor elements are pressure p,

t(r , t) = -p(r, t)I     (1.2.1)

and (1.1.1) become the Navier-Stokes equations

�(r, t)
Dv(r, t)

Dt
= ��p(r, t) +�(r, t)F(r, t)      (1.2.2)

1.3.  If the motions and body forces are irrotational

Dv(r, t)
Dt

=
�v(r , t)

�t
+ v(r, t) • �v(r, t) =

�v(r, t)
�t

+
1
2

�v2(r, t) � v(r, t) � � �v(r, t)

=
�v(r, t)

�t
+

1
2

�v2(r, t)

    (1.3.1)

and

F(r, t) = -��(r, t) = g(r, t)          (1.3.2)

then (1.2.2) become the Bernoulli equations

�(r, t)
�v(r, t)

�t
= ��p(r, t) -

1
2

�(r, t)�v2 (r,t) - �(r, t)��(r, t)      (1.3.3)



  

�(r, t)
�v(r, t)

�t
= ��p(r, t) -

1
2
�(r, t)�v2 (r,t) - �(r, t)��(r, t)      (1.3.3)

1.4.  Although (1.3.3) already uses a linear constitutive law, we carry the linearization of
(1.3.3) and (1.1.2) all the way through. Following seismological procedures (because I'm
a seismologist) let

�(r, t) = �0(r) + �1(r, t)

p(r, t) = p0 (r) + p1(r, t)

�(r, t) = �0(r)+ �1(r, t)

   (1.4.1)

where all the sub-0 quantities refer to the undisturbed state and the sub-1 quantities are
small perturbations about the initial state.  Placing (1,4.1) into (1.3.3) and (1 .1.2) and
dropping products of sub-1 quantities (velocity v is assumed be of sub-1 size) gives

�0(r)˙ ̇ u (r, t) = ��p1(r, t)+ � •[�0(r)u(r, t)]��0(r) - �0(r )��1(r ,t)       (1.4.2)

��1(r, t)
�t

+ �• [�0(r)v(r , t)] = 0 ��1(r ,t) = ��• [�0(r)u(r , t)]      (1.4.3)



  

�0(r)˙ ̇ u (r, t) = ��p1(r, t)+ � •[�0(r)u(r, t)]��0(r) - �0(r )��1(r ,t)       (1.4.2)

��1(r, t)
�t

+ �• [�0(r)v(r , t)] = 0 	 �1(r ,t) = ��• [�0(r)u(r , t)]      (1.4.3)

The equations now are expressed in displacement u instead of velocity v. In obtaining

(1.4.2) we used (1.4.3) and assumed that the initial state was hydrostatic equilibrium

�p0(r )= -�0(r)��0(r) = �0(r)g0(r)           (1.4.4)

Pressure increment p1(r, t) consists of an elastic term and an advected term

p1(r, t) = -� (r)�• u(r, t) - u(r, t) •�p0(r)   (1.4.5)

The � (r)is fluid incompressibility. Equations (1.4.2), (1.4.5) together with

�
2
�1(r, t) = -4�G�•[�0 (r )u(r, t)]   (1.4.6)

represent five equations for five unknown functions u(r , t) ,  p1(r, t),  �1(r, t) to be found in

V.



  

2. Further Simplifications

2.1. Usually for tsunami calculations we take the media to be homogeneous

�(r) = � , �0 (r) = �0

and gravity to be constant and unchanging

��0(r) = -gˆ z , �1(r, t) = 0

The four equations of interest now are

�0˙ ̇ u (r, t) = ��p1(r , t)- g�0 ˆ z �• u(r, t)

p1(r, t) = -�� •u(r, t) - g�0uz (r, t)
          (2.1.1)

or
�0˙ ̇ u (r, t) = ��pe(r , t)+ �0g[�uz(r, t) - ˆ z �• u(r, t)]

pe(r, t) = -�� •u(r, t)
      (2.1.2)

with

pe(r, t) = p1(r, t)+ u (r, t) •�p0(r )= -�� •u(r, t)          (2.1.3)

Four equations (2.1.2a,b) and two seafloor/sea surface boundary conditions are the basis

for rigorous tsunami calculations.



  

SIDE POINT.

Almost all of the "engineering type" of approachs to tsunami are based on (2.1.1) further

assuming incompressibility and depth averaging (a.k.a. shallow water or long wave

assumption).  Let v(r,t) = ˙ u h(r, t) + ˆ z ̇  u z (r, t)  and r=(x,y,z) go to r=(x,y)

˙ v h (x,y,t)+ vh(x, y,t) •�vh(x,y,t) = ��0
� 1

�p1(x,y, t) = g�uz(x,y, t)          (2.1.1b)

where we re-instated the advected part of the velocity change. This, plus the

incompressible continuity condition taken at the "surface"

�• [H(x,y) + uz(x, y,t)]vh (x,y,t) = ˙ u z (x, y,t)    (2.1.1c)

represent the "non linear" shallow water equations and a re solved by purely numerical

means. H(x,y) is the still water depth.



  

SIDE POINT (continued)

Sometimes (2.1.1b) and (2.1.1.c) are called the non linear shallow water wave equation.

Why wave equation?    If you take �• of  (2.1.1b), the time deriviative of (2.1.1.c) and

insert into (2.1.1.b) you get after linearization

˙ ̇ u z(x,y, t) = gH(x, y)�2uz (x,y,t) + ˙ v h (x,y,t)�H(x ,y)          (2.1.1c)

 If the ocean was uniform depth (2.1.1.c) would just reduce to the WAVE EQUATION

with solutions

uz(x,y, t) = F(t -
R

gH
)

That is, the surface motions of long wave tsunami would travel like an undispersed wave

at speed gH



  

3.  Boundary Conditions-Classical Approach
In the linearization above, boundary conditions on deformed surfaces are evaluated on

undeformed surfaces S0. For inviscid fluids, uz(r,t) and pe(r,t) are continuous across

originally flat laying boundaries between homogenous layers, i.e.

uz(r, t)[ ]�
+

pe(r, t)[ ]�
+    on S0              (3.1.1-2)

Classical tsunami theory however, instead of solving equations (2.1.2)

�0
˙ ̇ u (r, t) = ��pe (r, t) +� 0g[�uz(r, t) - ˆ z � • u(r, t)];    pe (r, t) = -��• u(r, t)     (2.1.2)

with simple boundary conditions (3.1.1-2) rather solves a simpler set of equations

�0
˙ ̇ u (r, t) = ��pe(r, t);   pe(r, t) = -�� • u(r, t)      (3.1.3a,b)

with more complex boundary conditions

uz (r,t)[ ]�
+

p1(r,t) [ ]�
+

=  pe(r, t)+ �0guz(r,t)[ ]�
+
 on S0 (3.1.4-5)

This approximation takes all of gravity's effects in the body of the fluid (note that g does

not appear in 3.1.3a,b) and "compresses" them onto boundaries of fluid layers of different

density. [Don't confuse the p1 in (3.1.5) with the p1 in (1.4.5) as the second term differs in

sign.]    The effectiveness of the classical approach can be gauged later by comparing the

analytical solutions to (3.1.3a,b) and (3.1.4-5) to numerical solutions of (2.1.2) and

(3.1.1-2).



  

4.  Two dimensional solutions.

4.1 Let's first solve some tsunami problems in two dimensions. Extensions to three
dimensions are straightforward and make heavy use the 2-D results.  Let coordinate x be
horizontal, coordinate z be directed downward, g=g ˆ z , uy and all �/�y =0. Equations

(3.1.3a,b) become

�0˙ ̇ u z (x,z, t) = ��pe(x,z, t)/�z

�0˙ ̇ u x(x, z, t) = ��pe(x,z, t)/�x

pe(x,z, t) = -�[�ux(x,z, t)/�x +  �uz(x,z, t)/�z]

   (4.1.1)

Because we are working with linear equations, we can make use of superposition both in
frequency and wavenumber. Let new wavenumber-frequency variables be transforms of
space-time variables like

f(k, z,�) = dx
��

�

� dt f(x, z, t)e-i(kx-�t)

��

�

� ;        (4.1.2a)

These are reconstituted by

f(x, z, t) =
1

4	2 dk d�
��

�

�  f(k, z,�)ei(kx-�t)

��

�

�   (4.1.2b)



  

With this convention in (4.1.1) � / �t 	 �i� and � / �x 	 ik

�

�z

uz(k,z,�)

pe(k,z,� )
� 


 
� 

� 

 
� =

0 �2/�0�
2

�0�
2 0

� 


 
� 

� 

 
� 

uz(k,z,�)

pe(k,z,�)
� 


 
� 

� 

 
�    (4.1.3)

where �2 =� 2 (� ,k) = k2 - � 0�
2 /�  and use was made of

ux(k, z,�) = ikpe(k,z,� )/�0�
2   (4.1.4)

In linear theory, horizontal tsunami motions are not independent, but can be found from

p1 and uz once they are known.  (4.1.3) is exactly the same equations as used  in seismic

wave propagation in fluid layer.
Given uz and p1 and any depth z0, equations (4.1.3) tell us how to find uz and p1 and any
other depth z

uz(k,z,�)

pe(k,z,� )

� 

� 
� 

� 

� 
� =

C(z,z0 ) 	S (z,z0) /
0�
2


0�
2S(z, z0) /	 C(z, z0)

� 

� 
� 

� 

� 
� 

uz(k,z0 ,� )

pe(k, z0 ,�)

� 

� 
� 

� 

� 
�     (4.1.7)

where C(z,z0)=cosh[	(z-z0)] and S(z,z0)=sinh[	(z-z0)]. We can also write the solutions

(4.1.7) in terms of uz and p1(k, z,�) = pe(k,z,�) + uz(k,z,�)
0g  that are continuous across the

undeformed surfaces

uz(k,z,�)

p1(k,z,�)
� 

� 
� 

� 

� 
� =

C(z,z0) � g	S(z, z0) /�2
	S(z,z0) / 
0�

2


0S(z,z0 )

	
�2 �g2	2 /�2( ) C (z,z0) + g	S(z,z0) /�2

� 

� 

� 
� 

� 

� 

� 
� 

uz(k,z0,�)

p1(k,z0 ,�)

� 

� 
� 

� 

� 
�    (4.1.8)



  

4.2  In all of t he cases considered here, we employ the "decoupled" approach that
assumes that the tsunami motions do not reach into the elastic space below the ocean.
That is, the vertical displacement at the sea floor

uz(k,H,�) = always specified     (4.2.1)

zero or otherwise. At the sea surface, the linearized boundary condition (3.1.5) says that

p1(k,0,�)=0    (4.2.2)

With p1 at the sea surface and uz at the sea floor specified, we are ready to use (4.1.8) to
solve some tsunami excitation problems.



  

4.3 Tsunami Dispersion relation.  In an ocean of depth H, consider the second equation

in (4.1.8) at z=0 with (4.2.2) and a rigid bottom condition (4.2.1)

0 = [cosh(�H) � g�sinh(�H) /�2 ]p1(k,H,�)    (4.3.1)

The only way this can hold is if

�
2

= g�(k,�)tanh[�(k,� )H]  (4.3.2)

The frequency �(k) for a given wavenumber k, or the wavenumber k(�) a t a given

frequency form the tsunami dispersion relationship in a compressible ocean of depth H.

Although it is not a necessary assumption in our theory, often we take the ocean as

incompressible. In this case

� 	 � and � = k2 - �0�
2/� 	 k     (4.3.3)

�
2

= gk tanh[kH]  (4.3.4)

Tsunami Modes have NO OVERTONES.  Only one frequency satisfies (4.3.4) for each

wavenumber.

Note for long waves kH<<1 in incompressible water (4.3.4) reduces to

�
2 ~ gk2H  so c =� /k ~ gH  as we have already established.



  

Tsunami 
waves have 
far greater 
period, 
faster speed, 
and longer 
wavelength 
than 
familiar 
beach waves 

In deep 
ocean, a 
10m wave 
rising over 
50 km is as 
flat as 
Kansas.  Ships at sea don’t see tsunami.



  

4.4 Tsunami Eigenfunctions. Supposing |uz|=1 at the sea surface z=0 and conditions

(4.2.2) and (4.3.2), the displacements and pressures at any depth z are from (4.1.8) are

uz(z,�) =
k(�)g 

�
2

sinh(k(� )(H� z))

cosh(k(� )H)
      ux(z,� ) = -

ik(� )g

�
2

cosh(k(� )(H� z)

cosh(k(� )H)

pe(z,�) = -�0g
cosh(k(�)(H �z)

cosh(k(� )H)
                p1(z,�) = -�0g

sinh(k(�)z))

cosh(k(�)H) sinh(k(�)H)

(4.4.1)

Clearly, uz(H,�)=p1( 0 , � )=0 as required and pe(0,�)=-�0guz(0,�) since

p1(�,z)=pe(�,z)+�0guz(�,z) for any z. In terms of tsunami "eigenmodes" we just tack on

exp(-i[k(�)x-�t])

uz(x,z, t,�) =
k(�)g 

�
2

sinh(k(�)(H � z))

cosh(k(� )H)
ei (k(� )x��t)

ux (x,z,t,� ) = -
ik(�)g

�
2

cosh(k(� )(H � z)

cosh(k(� )H)
e i(k(� )x��t)

pe(x,z, t,�) = -�0g
cosh(k(� )(H � z)

cosh(k(�)H)
ei (k(� )x��t)

p1 (x,z,t,�) = -�0g
sinh(k(� )z))

cosh(k(�)H)sinh(k(�)H)
ei (k(� )x��t)

(4.4.2)

Taking the real part of (4.4.2): uz ~ cos(k(�)x-�t) and ux~ sin(k(�)x-�t). You can see that

tsunami motion is a prograde ellipse.



  

Unlike 
regular 
waves, 
tsunami 
reach all the 
way to the 
sea bottom.

Generate 
Bedforms

--You can’t 
out dive a 
tsunami.

uz(x,z,t,�) =
k(� )g 

� 2
sinh(k(�)(H �z))

cosh(k(�)H)
ei(k(� )x��t)

ux (x,z, t ,�) =-
ik(�)g

� 2
cosh(k(� )(H � z)

cosh(k(� )H)
ei(k(� )x��t)

Vertical Structure of Wave field decomposed by Eigenmodes, 
propagated individually , then reconstructed at specified receiver point.



  

5 Specific 2-D Problems.

5.1 Initial Value Problems at the sea surface. For an asteroid impact tsunami, you might
select sea surface displacement to reproduce initial transient cavity shapes given by
experiment or by full-blown hydrodynamic simulations of impacts.  If so, we specify an

initial vertical surface displacement condition like

uz(x,0, t = 0) = uz
top (x)  (5.1.1)

and its transform

uz
top (k) = dx

��

�

�  uz
top(x) e-ikx   (5.1.2)

In this case, the eigenmodes (4.4.2) give the evolved tsunami straight away [From now
on, I assume an incompressible fluid so �(k(�)) = k(�) ]

u(x,z, t) = Re dk
��

�

�
uz

top(k) 

2�
ˆ z 

sinh(k(H �z))

sinh(kH)
� i ˆ x 

cosh(k(H � z))

sinh(kH)
� 

	 
 
� 

�  
e i(kx�� (k)t)

or changing the integration varible to frequency

u(x,z,t) = Re d�
��

�

�
uz

top (k(� )) 
2�u(� )

ˆ z 
sinh(k(�)(H � z))

sinh(k(� )H)
� i ˆ x 

cosh(k(� )(H � z))
sinh(k(�)H)

� 

	 
 
� 

�  
ei (k(� )x�� t)



  

Figure 1. Equation (5.1.3a) evaluated with a parabolic initial
displacement of the sea surface. This is my concept of asteroid impact
tsunami.

OK.  We can do our first
 tsunami simulation 
already.

For vertical motion at 
the surface, 
just evaluate this 
integral at different 
times.

Piece of Cake.

uz(x, 0, t) = Re dk
��

�

�
uz

top(k) 

2�
ei (kx��( k)t) (5.1.3)



  

Most Impact tsunami are very dispersive because they fall on the 
“shoulder” of the dispersion curve.

Long periods travel faster than short periods. 

Dispersion reduces tsunami size with distance.

Impact tsunami size falls faster with distance than EQ tsunami.



  

We have some feeling for impact-
like effects from nuclear tests.  

Baker Test:  1946

Bikini Atoll,   Y=23Kt

Cavity Diameter ~ 1000 feet

Local Tsunami Height   ~100 feet



  

How do we know simple linear theory is applicable? Let’s scale 
the initial cavity size to the 23kt Baker Test and run the waves 
in the same depth of water as done in 1946.



  

S1   NUMERICAL NUGGET   -   a.k.a.   Nut and Bolt.

The dispersion relation  �
2(k) = gk tanh[kh]  makes it easy to find frequency �(k)

given a wavenumber k, but what if we are given a frequency � and need wavenumber

k(�)?  Do we try to find solutions to

�
2

= gk(�) tanh[k(� )h]   (S1.1)

numerically?  Nope, that would take too long.    Instead, a first guess at k(�) is

k0(�) = ˆ � 
2 tanh[ ˆ � 

2h]3/4( )
�2 / 3

; ˆ � 
2

=�
2 / g

a refined estimate k1(�)=k0(�)+�k(�) is found by placing this into (S.1.1), linearizing,

and solving for �k(�).

k(� ) � k1(�) = k0(�) 1+
ˆ � 2 � ˆ � 0

2

k0
2(�)h + ˆ � 0

2 1� ˆ � 0
2h( )

� 

� 
� 

	 


 
�     (S1.2)

where ˆ � 0
2

= k0 (�)tanh[k0(�)h].  I find (S1.2) sufficient for all my purposes, but

you could substitute k1(�) and ˆ � 1
2 for k0 (�) and ˆ � 0

2 and evaluate (S1.2) again.



  

Suppose instead we have some initial vertical surface velocity condition like
˙ u z(x,0, t = 0) = ˙ u z

top(x)   (5.1.5)

with its transform

˙ u z
top(k) = dx

��

�

�  ˙ u z
top(x) e-ikx   (5.1.6)

The same reasoning suggests that tsunami the displacement field would be

u(x, z, t) = Re d�
��

�

�
˙ u z

top(k(�)) 

�i�2�u(�)
ˆ z 

sinh(k(�)(H � z))

sinh(k(�)H)
� iˆ x 

cosh(k(�)(H � z))

sinh(k(�)H)

� 

� 
	 


 

� 
� e

i(k(�)x��t)

or

u(x, z, t) = Re dk
��

�

�
˙ u z

top(k) 
� i�(k)2�

ˆ z 
sinh(k(H �z))

sinh(kH)
� iˆ x 

cosh(k(H � z))
sinh(kH)

� 

� 
	 


 

� 
� e

i(kx�� (k)t)

 (5.1.8)

 (5.1.8) follows from application of ( -i�)-1 in the frequency domain is the same as integration in the time

domain. (5.1.3) and (5.1.8) are in fact independent solutions so that they may be combined like

u(x,0,t) = Re d�
��

�

�
uz

top(k(� )) + i˙ u z
top (k(�))/�{ } 

2�u(�)
ˆ z 

sinh(k(�)(H � z))

sinh(k(�)H)
� iˆ x 

cosh(k(�)(H � z))

sinh(k(� )H)

� 

� 	 

 

� � 
e i(k(�) x�� t)

or

u(x,0,t) = Re dk
��

�

�
uz

top(k) + i˙ u z
top (k)/� (k){ } 

2�
ˆ z 

sinh(k(�)(H �z))

sinh(k(� )H)
�i ˆ x 

cosh(k(� )(H � z))

sinh(k(�)H)

� 

� 	 

 

� � 
ei (kx��( k)t)

  (5.1.9)



  

(5.1.9) states the tsunami initial value problem. It says "Given the vertical displacement
and vertical velocity OF THE SEA SURFACE AT ANY ONE TIME, (5.1.9) can be used
to find the displacement and velocity of the sea AT ANY DEPTH AT ANY TIME
LATER.

This is important. For landslide sources for instance, if you c an specify sea surface
conditions just once after the slide is done, then you c an use (5.1.9) to propagate the
waves anytime further.

Too (5.1.9) explains why workers who employ "initial static lumps of water" as tsunami
sources can't correctly model many situations. Given a fixed lump, different selections of
initial velocity can give totally different tsunami motions.



  

5.2 Finite duration sources. Suppose now that we have  some vertical surface
displacement condition that takes place over a finite period of time t>0 like

uz(x,0, t) = uz
top(x, t) H(t)      (5.2.1)

The convolution theorem tells us how to form the tsunami fields given (5.1.3)

u(x,z, t) = Re d�
��

�

�
1 

2�u(�)
ˆ z 

sinh(k(�)(H � z))

sinh(k(� )H)
�i ˆ x 

cosh(k(� )(H � z))

sinh(k(� )H)

� 

	 
 
� 

�  
e i (k(� )x��t)

� dx0

��

�

� dt0

0

t

� ˙ u z
top (x0 , t0 ) e�i (k(� )x0 ��t 0 )

or

u(x,z, t) = Re dk
��

�

�
1 
2�

ˆ z 
sinh(k(H � z))

sinh(kH)
� iˆ x 

cosh(k(H � z))
sinh(kH)

� 

	 
 
� 

�  
e i(kx �� ( k)t)

� dx0

��

�

� dt0

0

t

� ˙ u z
top (x0, t0) e�i (kx 0�� (k)t 0 )

(5.2.2)

Be aware of the time differentiation of the surface condition in (5.2.2).



  

u(x,z, t) = Re dk
��

�

�
1 

2�
ˆ z 

sinh(k(H� z))

sinh(kH)
� iˆ x 

cosh(k(H� z))

sinh(kH)

� 

	 
 
� 

�  
e i(kx�� (k)t)

� dx0

��

�

� dt0

0

t

� ˙ u z
top (x0, t0) e�i (kx 0�� (k)t 0 )

(5.2.2)

Sometimes, uz
top (x,t)  can be simplified such that one or both of the sub-0 integrals above

can be done by hand. For instance, for a propagating source all the time histories of uplift
at different points might be the same within a constant factor, only delayed in time.

uz
top (x,t) =  u z

top(x)S(t - t(x));  S(t) = 0 if  t < 0 

dx0
��

�

� dt0
0

t
� ˙ u z

top(x0 ,t0 ) e�i(k(� )x0 �� t 0 )
= dx0
��

�

� uz
top(x0)e�i(k(�)x0 ��t(x0 )) dt0

0

t� t(x0 )

� ˙ S (t0) ei�t 0

(5.2.3)
If S(t) was a step function, the last integral would equal 1 for t>t(x0) and 0 for t<t(x0). If
S(t) was a ramp function, the last integral would equal min[1, (t- t(x0))/TR] for t>t(x0) and
0 for t<t(x0).



  

5.3 Initial Value Problems at the seafloor. To model a submarine earthquake or landslide,

you might select seafloor vertical displacement to follow a certain uplift history.  In this

case we'd like the tsunami from an initial vertical bottom displacement condition like

uz(x,H, t = 0) = uz
bot (x)    (5.3.1)

and its transform

uz
bot (k) = dx

��

�

�  uz
bot (x) e-ikx     (5.3.2)

In this problem, you can' t just plug in the eigenmodes (4.4.2) like we d id for asteroid

impacts because uz in the eigenmodes vanish at the seafloor. There is no way to match

(5.3.2). To solve this problem, we have to go all the way back to (4.1.8), now with (5.3.2)

and (3.1.5)

uz(k,0,�)

0
� 

� � 
� 

� 	 =
C(0,H) 
 gkS(0,H)/� 2 kS(0, H)/ �0�

2

�0 S(0,H)
k

� 2 
 g2k2 /� 2( ) C(0,H) + gkS(0,H) /� 2

� 

� 
� 

� 

� 
	 

u
z

bot(k,�)

p1(k, H,�)

� 

� � 

� 

� 	 
   (5.3.3)

where C(z,z1) = cosh[k(z-z1)], T(z,z1) = tanh[k(z-z1)], etc.



  

Solve the second equation of (5.3.3) first for pressure at the seafloor

P1(k, H,� )= -
�0g�2 1� �2T (H,0)/kg( )

�
2
��

2(k)
u

z
bot(k,� )     (5.3.4)

then substitute into the first equation of (5.3.30 at any depth z to find displacement

uz(k,z,�) =

� 2 C(H,0)C(z,H) + S(z,H)S(H,0)( )

�gk C(z, H)S(H,0) +C (H, 0)S(z,H)( )

� 

� 
� 
� 

� 

� 
� 
� 

C(H,0)[�2
� �

2 (k)]
u

z
bot (k,�)     (5.3.5)

Take care here to distinguish general frequency � from the characteristic frequency �(k).

(5.3.5) is our first landslide tsunami. All we need to do is transform it back to time and
space by (4.1.2b). As formulated above, u

z
bot (k,�)  actually is any function of time. If we

want it to be a fixed initial uplift then

u
z
bot (k,�) =  

u
z
bot (k)

-i�
   (5.3.6)

The (-i�)-1 is the time transform of a step function, thus

uz(k,z,�) =

i� C(H,0)C(z,H)+ S(z,H)S(H,0)( )

�(igk/�) C (z,H)S(H,0)+ C(H,0)S(z,H)( )

	 

� 
� 

� 

� 
� 

C (H,0)[�2
� �

2 (k)]
u

z
bot(k)    (5.3.7)



  

We apply the inverse time transform, making use of the residue theorem to evaluate the simple poles

that lay at �=0, �=±�(k). Here's a useful table of transforms.

i�

�
2
��

2(k)
� cos[�(k)t]H(t);      

�

�
2
��

2(k)
� �i cos[�(k)t]H(t)

1

�(� 2 �� 2 (k))
�

�i cos[�(k)t]H(t)

� 2(k)
+

iH(t)

� 2(k)
;

i

� 2 �� 2(k)
�

cos[�(k)t]H(t)

�2(k)
�

H(t)

� 2(k)

  (5.3.8)

In the time domain (5.3.7) is

uz(k,z, t) =

C (H, 0)C (z, H) + S(z,H)S(H, 0)( ) cos[�(k)t ]

+
C(H,0)
S(H, 0)

C(z,H)S(H,0) + C(H,0)S(z,H)( ) � cos[�(k)t ]+ 1[ ]

� 

	 

� 
� 
� 

� 


 

� 
� 
� 

C(H, 0)
u

z
bot (k)H(t)

=
�S(z,H)

C(H,0)S(H, 0)
u

z
bot (k)cos[�(k)t]H(t)+ C(z,H)+

S(z,H)

T(H,0)
S(z,H)

� 

� 
� 

 

� 
� u

z
bot(k)H(t)

  (5.3.9)

All we have to do now is the inverse wavenumber transform. For t>0 we have

u(x, z, t) = Re dk
��

�

�
uz

bot (k) 
2� cosh(kH)

ˆ z 
sinh(k(H �z))

sinh(kH)
� iˆ x 

cosh(k(H � z))
sinh(kH)

� 

	 
� 
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� e

i(kx��( k)t)
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��

�

�
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bot(k) 

2�
ˆ z cosh( k(h- z)) �

sinh(k(h - z))

tanh(kh)

� 
� 
� 

� 
� 
� 
� iˆ k sinh(k(h - z))�

cosh(k(h - z))

tanh(kh)

� 
� 
� 

� 
� 
� 

� 

	 
� 
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� e

ikx
  (5.3.10a,b)



  

u(x, z, t) = Re dk
��

�

�
uz

bot (k) 
2� cosh(kH)

ˆ z 
sinh(k(H �z))

sinh(kH)
� iˆ x 

cosh(k(H � z))
sinh(kH)
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� 
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� 
� e

i(kx��( k)t)

+ dk
��

�

�
uz

bot(k) 

2�
ˆ z cosh( k(h- z)) �

sinh(k(h - z))

tanh(kh)
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� iˆ k sinh(k(h - z))�

cosh(k(h - z))

tanh(kh)
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� 
� e

ikx
  (5.3.10a,b)

Equation (5.3.10) is the full 2-D tsunami wave solution for an instantaneous uplift of the
sea bottom. It looks messy, but it is not so bad.

Consider integral (5.3.10b), see that time does not appear. This is a static field that does
not propagate. Too, at the surface z=0 the vertical component of the static field vanishes.

At z=H the static term reduces to the vertical displacement at the sea floor as it should.

Recall that the propagating eigenmodes in (5.3.10a) have zero vertical motion at the sea
floor. In a word, (5.3.10b), is needed to match the boundary conditions, but it is usually
not of much interest.



  

Consider the surface vertical displacement of the propagating tsunami from

 an instantaneous bottom vertical bottom disturbance

uz(x,0, t) = Re dk
��

�

�
uz

bot (k) ei(kx��(k)t) 

2� cosh(kH)      (5.3.11)

You can't get much simpler than this!

It is remarkable to me that the propagating tsunami from a bottom displacement is

identical to the tsunami from the same surface displacement (5.1.3)

except for the cosh(kH) term in the former. This term acts as a low pass filter.

 Short wavelength elements in the bottom uplift history, don't show up in the

tsunami field at the surface. This helps us in the modeling because small details

in landslides usually are not important.

uz(x, 0, t) = Re dk
��

�

�
uz

top(k) 

2�
ei (kx��( k)t) (5.1.3)



  

From this 2D theory (5.3.11) you can already put in the uplift 
from 2D dislocations and investigate the tsunami produced by 
quakes



  
2D tsunami theory applied to 2004 Sumatra subduction zone 
quake.



  

Because we use linear theory landslides are just a sequence of uplift 
sources distributed in space and time.  

u(x, z, t) = dk
��

�

�
e ikx 

2� cosh(kH)
ˆ z 

sinh(k(H � z))

sinh(kH)
� iˆ x 

cosh(k(H � z))

sinh(kH)

� 

	 
 

� 


  

� dx0 e�ikx0

��

�

� dt0

0

t

� ˙ u z
bot(x0 ,t0 ) cos[�(k)(t - t0 )]

2D tsunami theory applied to landslides.

At front of slide 
bits of ocean 
bottom are moved 
up. At the back bits 
are moved down



  

Movie Version In 
2D

As material moves 
along the seafloor, 
the water must go 
UP, DOWN, or 
AROUND.  This 
makes tsuanmi 
waves.

Landslide tsunami 
can be very 
directional 
depending on speed.

Whether a solid 
block or a 
disintegrating 
gravel pile, the 
process is the 
same.

u(x, z, t) = dk
��

�

�
e ikx 

2� cosh(kH)
ˆ z 

sinh(k(H � z))

sinh(kH)
� iˆ x 

cosh(k(H � z))

sinh(kH)

� 

	 
 

� 


  

� dx0 e�ikx0

��

�

� dt0

0

t

� ˙ u z
bot(x0 ,t0 ) cos[�(k)(t - t0 )]



  

6.  Passage to 3-D                                                                 (8 slides till break)

6.1 Once we have 2-D tsunami fields, passage to 3-D is fairly easy. Here are the steps:

1) position x, and wave number k to go vectors k=kx ˆ x +ky ˆ y , k=|k|, r=x ˆ x +y ˆ y 

2) product kx goes to k•r

3) 1-D integrals over wave number and position now cover all 2-D space

4) the unit vector ˆ x  goes to ˆ k 

With these, the propagating 2-D tsunami from an arbitrary bottom landslide

u(x, z, t) = dk
��

�

�
eikx 

2�cosh(kH)
ˆ z 

sinh(k(H � z))
sinh(kH)

� i ˆ x 
cosh(k(H � z))

sinh(kH)
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� dx0 e�ikx 0

��

�

� dt 0
0

t

� ˙ u z
bot(x0, t0 ) cos[�(k)(t - t0 )]

  (6.1.1)

becomes in 3-D

u(x, y,z,t) = dk
k
�

eik•r  

4�2 cosh(kH)
ˆ z 

sinh(k(H � z))

sinh(kH)
� iˆ k 

cosh(k(H � z))

sinh(kH)

� 

	 

 

� 


 
 

� dr0 e� ik•r0

r0
� dt0

0

t
� ˙ u z

bot (r0, t0) cos[�(k)(t - t0 )]

     (6.1.2)

where dk=dkxdky, dr0=dx0dy0.



  

There are millions of ways we can recast (6.1.2). Taking the origin of co-ordinates at a

representative location in the source region, one rewrite is

u(r, t) =
m =-�

m =-�

�  
k dk

2� cosh(kh)
0

�

� ˆ z sinh(k(h -z))
sinh(kh)

�
cosh(k(h - z))

sinh(kh)
[ˆ r k-1�/�r + ˆ � (kr)-1�/��]

	 


 � 
� 

 � 
Jm (kr)eim�

� dr0

A(t)
� Jm(kr0 )e� im� 0 dt0˙ u z

bot (r0 ,t 0)cos(�(k)(t � t 0 )) (6.1.3)
0

t

�

In (6.1.3), the Jm(x) are cylindrical Bessel functions, � is azimuth angle measured from x

toward y and r=|r|.  Again We have here a sum of 1-D integrates over wavenumber. Not 2-D

Assumed to be known is ˙ u z
bot (r0, t 0), the time derivative of the vertical displacement of the

seafloor. ˙ u z
bot (r0, t 0) integrated over the source area A(t) and source duration drives the

tsunami.

The advantage of (6.1.3) is that the second integral does not depend on receiver position r so

it can be done once separately.  Also, the sum over azimuthal order is often limited to just a

few terms.



  

Example: Instantaneous point moment tensor

 at depth d in halfspace.
We can do second integral in (6.1.3) exactly.  Only m=-2 to 2 appear in azimuthal sum

uz
surf (r, t) = k dk

cos�(k)t

2� cosh(kh)
A�uM ij� ij[ ]0

�

�      (6.1.4)

where

�xx = �
1

4

μ

� + μ
� kd

� 

	 

 � 

� 
J0(kr)� J2(kr)cos2[ ]e �kd

�yy = �
1

4

μ

� + μ
� kd

� 

	 

 � 

� 
J0(kr) + J2(kr)cos2[ ]e �kd

�xy = �yx =
1

4

μ

� + μ
� kd

� 

	 

 � 

� 
J2(kr)sin2[ ]e�kd

   

� zz = �
1

2

μ

� + μ
+ kd

� 

	 

 � 

� 
J0(kr)[ ]e�kd

� xz = �xz =
kd

2
J1(kr)cos[ ]e�kd

�yz = � zy =
kd

2
J1(kr)sin[ ]e�kd

The six elements of symmetric tensor             Mjk= ( ˆ a j ˆ n k + ˆ n j ˆ a k)   (10)

capsulize the mechanism of the earthquake. In (10), ˆ n , ˆ a  are the fault normal and slip

vector.   Note as d increases, all the strains (and tsunami) decrease.



  

Point source uplift  (left) and tsunami (right) for Dip Slip and 
Strike Slip Cases.  Dip slip tsunami ~3 times smaller for fixed 
moment.



  

For Finite Faults you can 
either add point sources, 
or return to (6.1.4) and 
integrate over uplift. 

eg. Tsunami from 
"Piston source”

uplifting U(r) meters
 over time TR
starting at t0

Same formula would 
be used to make 

earthquake tsunami. 
Earthquake uplift is a 

piston source but 
with a more complex 

shape

uz (x,y,t) =

m= -�

m= -�
�  

k dk
2	 cosh(kh)0

�

� Jm (kr)eim cos(�(k)(t� t0 �
 /2))

sin(�(k)
 /2)

��(k)TR / 2 
=0

= min(t�t0,TR ) dr0U(r0)

Area
� Jm(kr0)e� im0



  

How big of tsunami depends on 
how much seafloor uplift there 

is. The amount of uplift depends 
mostly on the magnitude of the 

quake and the “Style” of 
faulting.  Dip Slip or Strike Slip

Dip Slip on vertical fault 
here. One side up, one side 
down.  Ditto for the tsunami. 
Peak amp 49cm

Strike Slip on vertical fault 
here. Four lobes now. Ditto
for the tsunami. Peak amp 
just 4cm!

“Perpendicular to strike”



  

Generic 3D  Asteroid Impact Tsunami

You can really see how strong dispersion is in this case. Instead 

if r-1/2  waves decay more like r-0.9 or so.  How fast tsunami 
waves decay is a critical aspect of tsunami hazard forecasts.



  

Generic 3D Landslide

 Tsunami

Move Material from Blue area 
to Red area.

Strongest waves tend to go 
forward.

Positive Leading Wave Forward

Negative Leading Wave Back.

Things get more interesting in 
variable depth oceans.



  

Time for Lunch?


