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1. Introduction 
 
    Wave motion is one of the well-known scientific concepts. Behavior of the waves 
on the water surface, as well as propagation of acoustic or light waves are known 
from everyday experience. However, it is not easy to define the wave. In general we 
can say that it is a form of propagation of a disturbance of some physical field. We 
know seismic, electromagnetic, acoustic, gravitational waves. Though, there is no 
exact general definition of the waves, because of a variety of their characteristic 
features in different cases. For example, we may generally define the wave as a 
disturbance (signal), which propagates in a space with a certain velocity, but a form of 
the signal, as well as its velocity may vary. However, this definition involves 
propagation of heat (disturbance of temperature), but it is well known that the heat is 
propagated in another way – not by a wave. Therefore it is preferable to proceed from 
an intuitive notion on a wave as on a signal propagating from one to another part of a 
medium with a certain finite velocity. This signal may be distorted, may change its 
intensity and velocity, but should remain distinguishable. A perturbation arising in a 
part of the medium causes returning forces preventing this perturbation, and the 
forces are of such kind that they lead to appearance of similar (in general not exactly 
the same) perturbation in neighboring points. 
   Seismic waves arise in solid media due to elastic forces. A main peculiarity of 
seismic waves is that there are at least two types of waves (in anisotropic media - 
three types), with different velocities and different polarization. This fact is due to 
existence of at least two different elastic modules: in isotropic media - compressible 
and shear modules. Therefore returning forces are different for different types of 
deformation. 
       
         
   A nature of the wave may be explained by consideration of a compressional wave in 
a thin rod. The rod may be represented as a set of interacting elements. If one element 
is displaced, a force appears between this one and neighboring elements which is 
proportional to a relative variation of a distance between them. We can imagine that 
the elements are connected by elastic springs, and the force is due to compression or 
tension of the springs. 

     
 
Let a force due to deformation of the spring be  
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Motion of the i-th element of mass m submits to the Newton’s law: 
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In continuous case, when Δx→0, and m=ρΔx, u=u(x,t), we obtain 
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This is the simplest one-dimensional wave equation. Its solution is as follows:  

                   
ρ
Kc

c
xtg

c
xtfu =++−=           ),()( , 

    where  f(ξ) and g(ξ) are arbitrary functions, and c is regarded as velocity of the 
wave propagation. 
      If the masses deviate from the equilibrium in perpendicular direction (shear), it 
would be the same, but the module K is different (it is less than compression module), 
and the velocity of shear wave propagation  is less than for the compressional wave. 
   In continuum (2D or 3D) there are both types of deformation (compression and 
shear), therefore two types of waves may propagate. 
 
 
 
2. Equation of motion for solid elastic media 
 
 
   Consider an element Ω of elastic medium bounded by a surface S.  
 

Ω
S

n

Tn

Equation of motion of this element               
may be written as follows: 
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where F is body force density, Tn is stress applied 
to the boundary. 
    
  Applying Gauss formula to the surface integral, and taking into account that the 
stress tensor is symmetric, we finally obtain that 
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where T  is stress tensor, or a matrix formed by vector-rows  τx, τy, τz:    
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     Eqs. (2,3) are valid for all types of media: isotropic, anisotropic, inhomogeneous, 
anelastic,  differing by the relationship between stress and strain. Below we shall 
consider some particular cases. 
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    2.1. Homogeneous isotropic medium 
 
  In homogeneous isotropic medium the relationship between stress and strain, which 
in turn is related with spatial derivatives of displacement, is following: 
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Substituting  (4) to (2) (here we neglect the body forces) we obtain 
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The simplest approach to solve this equation (which is valid only for inhomogeneous 
medium!) is to represent the unknown vector function in terms of scalar and vector 
potentials: 
        ψrot+∇= ϕu   
Substituting this representation to (5) we obtain two independent equations for the 
potentials: 
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These are the wave equations  (scalar and vector): they describe propagation of the 
waves with two different velocities a and b. The scalar potential determines the 
longitudinal (compressional), or P-wave, vector potential determines the share, or S-
wave. 
   To solve these equations we should know the initial conditions, i.e. the functions 
ϕ(x) and  ψ(x) at t=0. 
   It is clear that the solutions of  (6) are additive, i.e. if 21   and   ϕϕ are two different 
solutions of (6a), then  21 ϕϕ +  will also be a solution of this equation. It means that 
that by superposition of  different (elementary) solutions we can construct the 
solution, which would fit the given initial conditions. The simplest elementary 
solutions are the plane waves. 
 

2.2. Plane waves 
 
At first we shall consider the scalar wave equation 
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A solution of (7) may be represented in the following general form: 
          (8) )),(()),((),( xkxkx ++−= tgtftu

 where  f(ξ) and g(ξ) are arbitrary functions, and 2

2 1
c

=k  . So  the two terms in the 

right-hand side of (8) describe the waves propagating in opposite directions with the 
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velocity c. It is clear that at any moment the solution at the planes (k,x)=const  is one 
and the same. 
   For simplicity we shall represent the solution of (6a),(6b) by one term in (8): 
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Then 
            SP uuu +=
where 
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  The motion in P-wave is directed along the direction of propagation k, whereas  in 
S-wave it is orthogonal to k. 
 
  It is clear that in both cases (P and S waves) the displacement may be represented in 
the form 
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where n and l are unit vectors, and c is a velocity . Using the concept of plane waves 
we can show that c may be equal a or b,  and in case c=a polarization vector l=n, and 
in case of c=b   l is orthogonal to n. 
  Substituting (10) to (5) we obtain 
      [ ] ( ) ( )ctcct /),(/),(),()( 2 xnlxnlnln −Φ ′′=−Φ ′′++ ρμμλ  
or 
        lnln )(),()( 2 μρμλ −=+ c
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  lnln  ),( θ=                                                          (11) 
or  lNl  θ= , where the matrix , so that θ and  l are eigenvalue and 
eigenvector of the matrix N correspondingly. 

TnnN =

It is easy to show that θ fits the equation 
       , 023 =−θθ
that has three roots 
            0   ,1 321 === θθθ  
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The eigenvector corresponding to the first root is l=n, and those corresponding to the 
other two roots are mutually orthogonal unit vectors, both orthogonal to n, i.e to the 
direction of propagation. Thus the first root corresponds to the longitudinal wave, and 
to other ones – to two share waves propagated with one and the same velocity. As 
shown below, in anisotropic medium these two roots are different, so that there are 
two quasi-share waves propagating with different velocities. 
 

 4



 5

  2.3. Inhomogeneous plane waves 
 
  The concept of plane wave may be extended to complex vectors l and n. 
  A solution of the wave equation (5) in the form (10) assumes n to be a unit vector, 
i.e.   
         (n,n)=1                                                          (12) 
 But n can also be a complex vector, i.e. 
         21 nnn i+=
Obviously, the function Φ(ζ), as a function of a complex variable ζ=ξ+ιη, should also 
be complex, as well as the polarization vector l: 
           21 lll i+=
          ),(),()( ηξηξηξ igfi +=+Φ  
Since both n an l are unit vectors, we have 
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As usual, since the displacement u is real, we take only the real part of the complex 
solution: 
       )/),( ,/),(()/),(  ,/),((),( 212211 cctgcctft nxnxlnxnxlxu −−−−−=    (13) 
This formula describes inhomogeneous plane wave. The motion in the 
inhomogeneous wave has the following meaning.  Temporal behavior of  
displacement is one and the same along straight lines determining by intersection of 
the planes (x,n1)=const and  (x,n2)=const. Direction of  the wave propagation 
coincides with the vector n1,  the wave propagates along this direction with the 

velocity 
1n

cV = . Since 11 2
21 >+= nn , velocity of the inhomogeneous wave is 

always less than c (a or b). The wave form and the wave amplitude are changing in 
direction of the vector n2. Components of the displacement along vectors  l1 and l2 are 
changing differently, accordingly to the different functions  f  and g. 
  The vectors  l1 and l2  in compressional wave coincide with the vectors n1 and n2. In 
shear wave the vectors l1 and l2 satisfy the relations 
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Orientation of the vectors  n1 , n2 , l1 , l2  are shown below. 
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It follows from (14) that 

        
12

21 ),(cos
ln
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If  β=π, we have SV-wave, and in case β=π/2 the wave is SH. It is clear that for SH-
wave l2=0, and only in this case polarization is linear. 
 
 If the function  Φ(ζ) is analytical, then, according to the Cauchi-Riemann 
relationship for real and imaginary parts of an analytical function of complex variable 
ζ=ξ+iη 
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If the motion is harmonic oscillation with frequency ω, i.e. if 
)exp()exp()( ωηωξωζζ −==Φ iAiA , then 
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  Particle motion in harmonic inhomogeneous waves is elliptic for P and SV waves, 
and linear for SH waves (see fig. below ) 
 
 

P SV SH

Particle motion in harmonic
   inhomogeneous waves

    In general case the functions f(ξ,η), g(ξ,η) may be represented as a superposition of 
these solutions, i.e. 
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Since time t enters to ξ ( ct /),( 1 xn−=ξ ), then a shape of signal at a fixed point x is 
determined by f and g as functions of ξ. It is clear that the function g as a function of ξ 
(or t)  in a given point x  is the Hilbert transform of  f.  
  Remind that this theory is true if Φ(ζ) (and consequently f(ξ,η)) as a function of t 
are analytical functions. However, in practice, we deal with non-analytical signals, 
which are equal to zero up to some moment. Nevertheless, usually the theory of 

 6



 7

inhomogeneous waves is extended to this case, and g(t) is assumed to be the Hilbert 
transform of non-analytical f(t).  This leads to a paradox – the signal in 
inhomogeneous wave arrives earlier than should be expected according to the 
causality principle. Examples of such signals (bold lines) and corresponding Hilbert 
transforms (dashed lines) are shown below.  Nevertheless it is possible to use for 
practical problems, because the earlier disturbance is not significant. 
 
 

                    
  
 
 The functions  f and g are not finite in the infinite space due to the exponential term 

 . Therefore they may be used to represent solutions of the wave motion either 
in a finite volume, or in case of sources. 

ωη−e

  Any wave field may be represented by superposition of plane waves (both 
homogeneous and inhomogeneous), which fits the equation of motion (5) and the 
following boundary conditions: 
• radiation condition, requiring the displacement not to increase at the infinity; 
• boundary conditions at interfaces in the medium; 
• conditions in the points where sources are located. 
   The 1st and the 3d (and sometimes the 2nd) conditions cannot be satisfied by only 
homogeneous plane waves. In such cases the inhomogeneous waves should be 
involved. 
 
 
 
        2.4. Energy flux 
 
 2.4.1. Energy density 
   Total wave energy is a sum of kinetic and potential energy. The density of kinetic 
energy is  
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Potential energy is the energy of elastic deformation. The density of the potential 
energy is determined as 

       ∑=
ji

ijijpW
,2

1 ετ , 

 7



 8

where τij  is stress tensor, and εij  is strain tensor: ⎟
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 2.4.2. Energy density in plane waves 
 
 For plane wave the density of kinetic energy is expressed as )/),((),( ctt nxlxu −Φ=
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The density of potential energy is 
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For inhomogeneous wave we must replace ijdiv ε and   u   in (15) by and   uedivℜ

ijeεℜ . These expressions are different for P, SV and SH waves: 
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Taking into account that for P and SV waves 2211    and   , lnln ==   , as well as 
l2=0 for SH-wave, we may write all these expressions in common form: 
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The first term ( 2)(
2

f ′ρ ) is similar to that for homogeneous wave, the second one 

describes the energy of elastic deformation due to amplitude variation in the direction 
perpendicular to the wave propagation, and the third one includes the part of energy 
due to non-linearity of polarization.  
 
  It should be noted that the total energy density is not constant as in case of 
oscillation. However, it can be explained easily: the energy is transported within the 
medium, and the energy conservation law is justified for the whole volume. 
   
 In case of harmonic wave ( )[ ]cti /),(exp nxlu −= ω  the total energy density is 
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             for homogeneous wave, ([ ctW /),(sin 22 nx−= ωρω )]
and 
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                                                              for inhomogeneous P, SV and SH waves. 
So for homogeneous wave the energy oscillates within a half of period from 0 to 

, whereas for inhomogeneous wave it never achieves 0. This can be easily 
explained: if the amplitude does not change along the wave front, then at the moments 
corresponding to maximum displacement both velocity and strain vanish, whereas this 
is not so in case of elliptic polarization  and  variation of the amplitude in the 
direction perpendicular to the wave propagation. 

2ρω

   
2.4.3. Vector of the energy flux (Poynting vector) 
 
    Here we shall derive the expression for the energy flux in general case. 
    For simplicity we assume that no external forces act in the medium, then the 
equation of motion is 
        uT &&ρ=∇                      (17) 
Multiply (17) by u : &
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Thus, variation of the energy within a volume Ω is equal (with opposite sign) to a flux 
of the Poynting vector across its surface. 
  

   On the other hand, ∫∫−=
∂
∂

S
ndSWc

t
E   and p=Wc , where c is group velocity, i.e. 

velocity with which the energy transports: in case of homogeneous wave in isotropic 

medium it is equal to cn, and in case of inhomogeneous wave it is 
1

1

1 n
n

n
c .  

The relationship  is useful in case of anisotropic media (as will be shown 
later), because it provides the expression for group velocity, which differs from phase 
velocity. 

uTc &−=W

 
  2.5. Spherical waves 
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 We consider spherically symmetric solution of scalar wave equation 
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For spherically symmetric solution 
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The latter may be represented in the form 
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A solution for Rϕ  is the same as for 1D wave equation, and for the case, when  the 
wave is expanded from the origin (R=0) 

                     
R

aRtFtR )/(),( −
=ϕ                        (19) 

It should be noted that (19) represents a solution of (18) everywhere except the point 
R=0. But because the wave propagates from R=0, this point may be regarded as a 
source, where a body force is applied. Therefore to get the solution, which exists 
everywhere including R=0, we must proceed from another equation, notably, 
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Then (19) is the solution of (20) valid in the whole space. 
 
     It should be noted that a solution in the form of ‘pure’ spherical wave  exists only 
for compressional waves. For shear wave we cannot have spherical symmetry  
because this is impossible for vectors tangential to a spherical surface. 
     
   Now we shall represent spherical wave as a superposition of plane waves. For this 
purpose it is necessary at first to represent  the function F(t) in a form of the Fourier  
integral 

                  ∫
∞
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=− ωωω dtiFtF )exp()(ˆ)(  .

It will be sufficient to restrict the analysis by a harmonic wave: 
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Also we may omit the factor exp(iωt), and consider the part of the solution, which 
depends only on spatial coordinates: 

                   
R
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  (The sign in the exponent also may be assumed opposite). 
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      (21) is a solution of the equation resulting from (20): 
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  Let us represent the solution in a form of 3D spatial Fourier transform: 
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then , substituting (23) to (22), we obtain the equation for Φ(k): 
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But the because of (24) the variables  are not independent. Therefore we can 
integrate over one of the components of the wave vector, e.g. over k

zyx kkk ,,

z. The integration 
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and the sign at γ is chosen so that Re γ>0. 
  (25) is  the Weyl integral, which represents spherical wave as superposition of  plane 
waves. Since ∞<<∞−∞<<∞− xx kk   , , the integrand contains not only 
homogeneous, but also inhomogeneous plane waves. 
 
The integral (25) may be transformed to the Sommerfeld integral, which represents 
spherical wave as a superposition of cylindrical waves. Let us replace the variables: 
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sin              sin
cos              cos

kkry
kkrx
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==
==

 

Then 

        ϕ
γ

γηϕ
π

ω π

kdkd
zikr

R
aRi
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=
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2

0

])cos(exp[
2
1)/exp(  

Taking into account that    )()]cos(exp[
2
1

0

2

0

krJdikr =−∫ ϕηϕ
π

π

 

we obtain 

             kdk
zkrJ

R
aRi

∫
∞ −

=
0

0 )exp()()/exp(
γ

γω   
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   In case of exp(-iωR/a) it is necessary to take (complex conjugate) instead of γ in 
the right-hand side. 

*γ

  This relationship can be extended to a case of non-analitical signals with sharp onset. 
If F(ω) is Fourier transform of such a signal f(t),  then 

   
( )

kdk
zkrJ

tiF
R

aRtiF

R
aRtf

∫ ∫
∫ ∞

∞−

∞

∞

∞− −
=

−
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−

0

0 )exp()(
)exp()(

]/exp[)(
)/(

γ
γ

ωω
ωω

 

How to understand that a wave with discontinuity on the front can be 
represented as a superposition of the waves including inhomogeneous waves, 
which arise simultaneously along the whole vertical axis? It is easier to 
analyze spherical wave as a superposition of cylindrical waves (Sommerfeld 
integral) rather than of plane waves. 

   Let us take r=0. Then the integral represents the wave field at 
         the z-axis. The integral becomes 

⎟⎟
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⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

=+=
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ω
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γ
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Now we shall show that contribution of the inhomogeneous waves is compensated by a part 
of contribution of homogeneous waves 

 
  Contribution of homogeneous waves: 
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   Contribution of inhomogeneous waves: 

               z
dzkdk

z

a

1)exp(
)exp(

0/

=−=
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∫∫
∞∞

ζζ
γ

γ

ω
               

  Thus the total contribution of the inhomogeneous waves is cancelled by a part of the 
contribution of homogeneous waves.  

 

 
 
 
    2.6. Cylindrical  waves 
 
  If the wave field is symmetric in respect to a straight line (z-axis), and the field does 
not depend on z-coordinate, the wave equation for potentials may be written in 
cylindrical coordinates as follows: 

               )(    ,11
2

2

2 ac
tcr

r
rr

=
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂ ϕϕ      for scalar potential, 

and similar equations for components of the vector potential with c=b. 
  This case may be regarded as 2D case, i.e. corresponding to the wave propagation in 
a plane z=const. In contradiction to the 1D case, to which a plane wave can be 
reduced, and to the 3D case (spherical wave), in 2D case it is impossible to construct 
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a solution in a general form f(r,t),  and it is necessary to express a solution as a 
function of t in the form of Fourier integral, and consequently to solve the equation 
for the harmonic wave: 

       0ˆˆ1
2

2

=+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂ ϕωϕ

cr
r

rr
                            (26a) 

or  

      0ˆˆ1ˆ 2
2

2

=+
∂
∂

+
∂
∂ ϕϕϕ k

rrr
                               (26b) 

where ck /ω= . 
   Solution of the eq.(26b) is a combination of the Bessel functions. If the time 
function is taken in the form exp(iωt), and the wave is expanded from r=0, then 
             , )(),(ˆ )2(

0 krAHr =ωϕ
and the solution for ),( trϕ  is following: 

                       ∫
∞

∞−

= ωωωω
π

ϕ dticrHAtr )exp()/()(
2
1),( )2(

0  

It is clear that, in contradiction to the 1D and 3D cases, the waveform is not remained 
unchanged in the process of propagation. This peculiarity was noticed by Hadamard 
in his classic studies of the wave equation: he pointed that the behavior of the solution 
is different for odd and even numbers of spatial dimension. 

  At large distances ⎟
⎠
⎞

⎜
⎝
⎛ >>1

c
rω we can use the asympotic representation for the Hankel 

function, so that the solution can be written as a wave with preserved form and with 

the amplitude decaying as 
r

1 : 

           
r

crtiCtr )]/(exp[),( −
=

ωϕ  

Though it seems that cylindrical waves cannot be excited in reality, they are important 
in analysis of surface waves and the waves with axial symmetry. 
 
 
 
 
 

2.6. Anisotropic medium 
 
  For anisotropic elastic medium the relationship between stresses and derivatives of 
displacement is expressed by the Hooke’s law in the  form: 
             klijklij c ετ =                                                       (27) 
(summation over repeated subscripts is assumed here and below). In the similar 
notation we may re-write the equation of motion (2): 

            2

2

t
u

x
i

j

ij

∂
∂

=
∂

∂
ρ

τ
                                                    (28) 

   Substitute (27) into (28): 
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       2
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2
1

t
u

x
u

x
u

x
c i

k

l

l

k

j
ijkl ∂

∂
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂ ρ                                  (29) 

A solution of this equation also may be represented in a form of plane waves: 

        ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−Φ=

c
xn

tlu qq
ii                                                 (30) 

where nq  are components of the unit vector indicating the direction of propagation, and 
li are components of the polarization (unit) vector. Substitute this to (29): 

     ijklljkijkl lcnnlnnlc 2)(
2
1 ρ=+                                       (31) 

This is a system of 3 linear equation respectively the components of the polarizarion 
vector   . Determinant of the system should be equated to 0, so we obtain a 
cubic equation  for c

321 ,, lll
2. All three roots of this equations are different (unlike the 

isotropic case) and depend on n, i.e. the velocity is different in different directions. 
The components of the vector l are not related to n as was in isotropic case.                 
In this case we have no pure ‘longitudinal’ and ‘shear ‘ waves: in so-called ‘quasi-
longitudinal’ wave the polarization vector l does not coincide with n, and in two 
‘quasi-shear’ waves  they are not orthogonal to n. 
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                Example:     Transersly isotropic medium 
 

 Let z-axis is the axis of symmetry. Then 

                    

zxzx

yzyz

xyxy

zzyyxxzz

zzxxyyyy

zzyyxxxx

L

L

N

CF

FNAA

FNAA

ετ

ετ

ετ

εεετ

εεετ

εεετ

=

=

=

++=

+−+=

+−+=

)(

)2(
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As before, we look for a solution for plane wave in the form 

⎟
⎠
⎞

⎜
⎝
⎛ −Φ=

c
t ),( xnlu . Substituting this solution to the wave 

equation we obtain the following equation for the velocity c 
and the polarization vector l: 

                           , ll 2c=M
where M  is matrix with elements depending on n and the 
modules A,L,N,F,C. In general case (arbitrary direction of n) 
the solution is too complicated, but it is simplified in the 
particular cases, when n is directed along or perpendicular to 
z-axis: 
   •  0    ,1 === yxz nnn        

                       2cρξ =
                    Equation for ξ 
                                        (32) 0)2()2( 223 =−+++− CLCLLCL ξξξ
                    has the solutions: 

                           
0),(    ,0),(   ,0),(     ,

,    ,

32321

321

====
===

llnlnlnl
LC ξξξ

 

      
                      •      1     ,0 22 =+= yxz nnn

                          (33) 0)()( 23 =−+++++− LANLNLAANLNA ξξξ

                              
)(      ,          ,

       ,        ,

321

321

zz

NLA
enlelnl ×===

=== ξξξ
 

 
 
 
 
 
 
  
 
   The most unusual property of the waves in anisotropic medium is that the energy is 
transferred not in the direction of propagation. It is difficult to understand for plane 
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waves, but can be illustrated on the example of the waves propagating from a point 
source. Surfaces of constant phase at two different moments are shown below: 
 
   
 

k
q

               
 
 
Vector k=n/c is wave vector, and c is phase velocity. But the energy is transported 
along the ray q=n’/u, where u is group velocity. The group velocity and the direction 
of the energy transfer can be obtained using the vector of energy flux, which in 
general case is expressed as follows. 
 
   As was shown above, 
              , uTc &−=W
where c is the velocity of the energy transport, i.e. group velocity (denote it u=un’) 
Then 
                    (34) Wu /),( uTn &−=′
From this relationship we can determine both group velocity and direction of the 
energy transport. 
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3. Propagation of elastic waves in media with boundaries 
 
      3.1. Boundary conditions 
 
   If the medium contains a boundary or discontinuity at which seismic velocity 
changes, the waves reflect or refract, i.e. some new waves are generated on the 
boundary. These waves must fit the boundary conditions. Boundary conditions relate 
stresses and displacements at the boundaries. 
  At free surface all stresses applied to the surface (so-called tractions) vanish, i.e. if 
the unit normal to the surface S is n, then (T,n)S=0. 
  Boundary conditions at interfaces between two solids may be different. The most 
usual condition is continuity of traction and displacement: 

                                            (35) 
)2()1(

)2()1(

uu

TT

=

= nn

  These conditions correspond to the welded contact. 
 Another case is the so-called sliding contact. This corresponds to the case, when the 
media in contact are allowed to slide freely along the boundary. It means that the 
tangential component of traction vanishes, whereas normal components of both 
traction and displacement are continuous. No restrictions are placed on the tangential 
component of displacement: 

                                      (36) 
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   Such contact may be realized if a thin fluid layer is placed between the media. 
   More general condition is the so-called unwelded contact. This includes (35) and 
(36) as particular cases. This contact can be also realized as before: if a thin ‘elastic’ 
layer with vanishing rigidity (μ→0) is placed between the two media. Depending on 
the relation between the thickness of the layer h and the rigidity μ the contact tends to 
the welded or to sliding one. To derive the boundary condition on such contact we 
have to consider the conditions on both interfaces of the layer, and then assume h→0, 
μ→0. The conditions at each interface are assumed as those for the welded contact.  
         

h μ
1

2

         
    
     
 
 
 
 
At the interface 1 the conditions are as (35): 
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At the interface 2 the displacements and tractions in the layer are 
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        Eliminating the tractions and displacements in the layer we obtain the 
relationship between these quantities in the upper and lower solids: 

                                        (37) 
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0
0

→
→

= . 

    If m=0 we obtain the welded contact, and if m→∞ the contact is sliding. 
   Alternative conditions for unwelded contact may be derived if we assume the layer 
between two solids as filled by a viscous fluid. 
       

3.2. Incidence of a plane wave to a plane boundary 
 
   It is well known that if a plane wave impinges on a plane boundary, new derivative 
waves result. The number of them depends on a type of the boundary and on 
polarization of the wave. In all cases we shall assume the boundary to be horizontal 
(z=0), and the waveform in the incident plane wave to be  

               ⎟
⎠
⎞

⎜
⎝
⎛ −

−
c

zxtF αα cossin  

so that the plane of incidence is y=0. 
1. Free surface. 

   Scheme of the incident and reflected waves is shown below. 
 

> > > >
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> >
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It is clear that to satisfy the boundary conditions we must assume the wave forms of 
the reflected waves the same as for the incident wave, i.e. F(t).  Also the argument of 
the function F  should be the same at any point x of the boundary z=0. This 
requirement leads to the Snell’s law:  

             
cba

sP 1sinsin
==

αα
     

where the meaning of c is an apparent velocity along the boundary. 
    If P or SV waves impinges to the surface, the displacements in the reflected P and 
SV waves are expressed as 
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where κP and κS  are the reflection coefficients. They are determined from a linear 
system derived from the two boundary conditions 
          0at        ,0   ,0 === zzzxz ττ  
The system may be written in the matrix notation: 

             bA P =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Sκ
κ

where the matrix A is following: 

    
b
a

S

P =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

= γ
ααγ
αγα

      ,
sin2     2cos
cos2      2sin    

S

SA  

 
and the vector b depends on the incident wave. 
  If P wave is incident, 

     
121

111

Ab
Ab
−=

=

If S wave is incident 

    
221

211

Ab
Ab
−=

=

The reflection coefficients depend on the angle of incidence. The most interesting 
case is when P wave reflected  due to incidence of SV wave becomes inhomogeneous. 

This case arises when 
γ

α 1sin >S . In this case 2)sin(1cos SP αγα −=   becomes 

imaginary, and the solution for P wave becomes complex. It is clear that the reflection 
coefficients for both P and S wave also become complex.    Polarization vector   

PzPx αα cossin een +=     for P wave also is complex. The amplitudes of the 

coefficients for 3=γ  are shown below. 
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At overcritical angles ( )  the modulus of the SS coefficient remains equal to 
1, but its phase changes, though the wave remains to be homogeneous.  

o
S 35>α

  If, as was defined above, f(x,y) and g(x,y) are real and imaginary parts of the the 
function of a complex variable F(z)=F(x+iy) , then displacement in the reflected P 
wave at overcritical angles is 
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For harmonic wave  
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Particle motion in P wave for different angles of incidence is shown in the next figure. 
The motion is elliptic, prograde (as a rolling ball), and z-axis of the ellipse increases 
with the angle of incidence. 
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If P wave is incident, reflection coefficients are always real. The behavior of the 
coefficients with the angle of incidence is shown below. 
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2. Interface between two solids. 
   If  P or SV is incident to the boundary, four waves arise: reflected P and SV, and 
transmitted P and SV. In case of incidence of SH wave only two waves arises:  
reflected and transmitted SH. Reflection and transmission coefficients are determined 
from a system of linear equations resulting from the boundary conditions.  
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   The system of equations for P-SV reflection/transmission coefficients in case of 
welded contact between the media (see the scheme above) has the following form: 
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and the vector bi  in the right-hand side depends on the incident wave: it is formed by 
the i-th column of the matrix A according to the rule   (i=1(2) if P(S) 
wave is incident from the medium (1) , i=3(4)  if P(S) wave is incident from the 
medium 2); the angles α and β correspond to P and S waves.                

j
ji

i
j ab )1()( −=

  
    As mentioned above, the boundary conditions can be of different type, depending 
on the physical properties of the boundary. It is interesting to compare the coefficients 
for unwelded contact for different values of m. It is convenient to choose a 
dimensionless parameter instead of m, e.g. 11 /~ bmm μω=  , where μ1 and b1 are 
rigidity and shear wave velocity in the medium where the incident wave propagates. 
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The  figure above shows the reflection/transmission coefficients as functions of the 
angle of incidence for different values of m  (remember that ~ 0~ =m  corresponds to the 
welded contact, and to the sliding contact).  ∞=m~
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3.3. Head waves 
 
   If spherical wave is incident on a plane boundary, and a velocity of one of the 
reflected/transmitted waves is larger then that of the incident wave, a so-called head 
wave is formed on the boundary in addition to the transmitted and reflected waves. It 
is easier to understand generation of the head wave proceeding from the concept of 
the wave fronts. Let the disturbance in the source begins at t=0, then the surface 
t=r/c, where r is a distance from the source and c is wave velocity, separate the 
disturbed and non-disturbed areas. This surface is called the wave front.   
   Let the source be placed in the half-space 1, the source radiates P-wave, and a2> a1. 
At  the boundary z=0 transmitted and reflected P and S waves are produced. The front 
of the reflected P wave is spherical, as of the incident wave, and the fronts of all other 
waves are spheroidal.  While the front of the incident wave crosses the boundary 

under the angle less than critical )(sin
2

1)1(

a
a

P <α , the wave fronts can be drawn as in 

the fig.a. The fronts are closed in one point, which the disturbance reaches at a given 
moment. At the moments, when the angle of incidence exceeds the critical one, the 
picture of the wave fronts changes: the front of transmitted wave breaks away from 
this point and propagates in the half-space 2 along the boundary with larger velocity 

(fig.b). 
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In this case a part of the boundary between points A and O turns to be disturbed.  This 
disturbance is radiated to the half-space 1 in a form of so-called head waves with 
conical fronts. The waveform of the head wave (ψ(t)) is the integral of the waveform 
of the incident wave (f(t)): 
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Amplitude of the head wave is determined by the formula: 
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where Γ is the coefficient of head wave generation, which is expressed in terms of 
reflection/transmission coefficients in the points A and B. If the types of incident, 
grazing and head waves are indicated by indices m,n,q, then 
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3.4. Rayleigh waves 

 
   In a half space with free surface exists a specific solution, which represents a 
superposition of inhomogeneous plane P and S waves. If we look for a solution in a 
form of a plane wave, the plane of incidence being y=0 (for simplicity we assume the 
dependence on time to be harmonic) then, according to the general representation of 
the inhomogeneous waves, we may write 
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      (38) 

Replacing these expressions to the boundary conditions at the free surface z=0 we 
obtain a linear system for the amplitudes A and B of P and S waves. This system is 
homogeneous, therefore if non-zero solution exists, the determinant of the system 
should be equal to zero. This is 
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Thus, the superposition of the waves (38) with A and B satisfying the boundary 
conditions (up to a constant multiplier) represent a wave propagating along x-axis and 
decaying exponentially along vertical direction. 
     Velocity of this wave along x-axis varies from 0.874b up to 0.956b for all possible 

values of b/a (from 
2

1  to 0). It does not depend on frequency. 

     Motion in the Rayleigh wave is elliptic, retrograde at the surface and at shallow 
depths, but becomes to be prograde at large depths. The figure shows variation of the 
vertical (w) and horizontal (u) components with depth. 
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  Ratio of horizontal and vertical amplitudes in Rayleigh waves at the surface is equal 

to 
4 2

4 2

)/(1

)/(1

ac

bc

−

−
. It depends also only on the ratio b/a. For b/a varying from 

2
1  to 0  

this ratio varies from 0.786 to 0.541. For b/a= 
3

1  it is equal to 0.681. 

 
  Rayleigh wave can be generated by a point source in the half-space, because the 
spherical wave radiated by such source may be represented as a superposition of both 
homogeneous and inhomogeneous plane waves. So it contains the waves with the 
apparent velocity equal to the velocity of Rayleigh wave. 
 

3.5. Love waves 
 
    Inhomogeneous SH wave cannot exist in a half-space with free surface, because it 
is impossible to satisfy the boundary condition by only one wave – this can be done 
only if its amplitude is equal to zero. But if we have a layer with S wave velocity less 
than in the underlying half-space, than the waves can propagate along the boundary, 
amplitude of which decays with depth in the half-space. These are Love waves. 
   Love wave is formed by homogeneous waves within the layer and by 
inhomogeneous waves in the half-space. Therefore the apparent velocity of Love 

wave should be within the limits  21 bcb ≤≤ < because ,
sinsin1

2

2

1

1

bbc
SS αα

==  and 

2

1
1sin1

b
b

S ≥≥ α . These waves should satisfy the boundary conditions at the free 

surface and at the interface.         
  Again we shall construct the solution as a superposition of plane waves. 
     In the layer (homogeneous plane waves) 
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   In the half-space (inhomogeneous waves) 
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c
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   It should be noted that in this case polarization vector is real (directed along y-axis), 
because the real part  (l1) is orthogonal to z-axis. So, if we recall the relationship 
between the components (16), we can see that cosβ=0 , so that  l2=0. 
   These waves should satisfy the boundary conditions at the free surface and at the 
interface. 
   At the free surface (z=0)  
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where from A=B. So the solution in the layer may be written as 
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At the interface z=H 
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 It follows from these equations that 
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This is dispersion equation for Love wave velocity: unlike to Rayleigh waves in a 
half-space the velocity depends on frequency. 
   It is easy to show analytically that b c b1 2≤ ≤  (as concluded above from simple 
physical consideration). In fact, only in this case left and right sides of the dispersion 
equation are real. 
   It is also easy to show that for a given  c  there are infinite numbers of frequencies 
satisfying the dispersion equation. In fact, 
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Also we can show that for any given ω  there are finite  number of c. The Eq. (39) 
may be written as 
                       )(),( 12 cfcf =ω  
A graph for the right-hand side is drawn 
by solid line. And the graph of the left-
hand side behaves as tan - at the values of 

argument 
π

π
2

+ k  it tends to ±∞. But the 

rate of change depends on ω. At the figure 
below the graphs for the left-hand side are 
shown for two different values of  ω. It is 
clear that for small ω there is only one 
root, and the  
number of roots increases with increase of 
ω. 
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Dispersion curves of phase ( c ) and group (u) velocities are shown below. 
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4. Waves in anelastic media 
 
 
  4.1.  Constitutive equations 
 
     Real solids are not perfectly elastic. This causes seismic processes (waves, oscillations) to 
attenuate with time due to various energy-loss mechanisms. The most usual explanation of these 
mechanisms is internal friction between microscopic particles of the material, which leads to 
transformation of mechanical energy to heat.  
  The simplest description of attenuation due to ‘friction’ can be developed for an oscillating 
mass on a spring: this is a phenomenological model for seismic attenuation. 
 

m f

 
 
 
 
 
 
 
 
 
 
Let x be a deviation of the mass from the equilibrium. The force  f  is friction opposing the 
motion of the mass. Denote K a measure of the spring’s stiffness.  
      The motion of the mass is                        
                             mx F&&− = 0 
If friction is absent, and oscillation results only from elastic force,  F=-kx,  
                            
             , 0=+ kxxm &&
and we obtain harmonic oscillation: 
                  mKtAx /      ),sin( =+= ωϕω  
However, if there is a friction between the moving mass and the underlying surface, and this 
force is proportional to the velocity of mass, so that the total force is 
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              xkxF &γ−−= , 
then the oscillation attenuate: 

                 
titeex ωβ−=

where 
K

m
m
K

m

2

1      ,
2

βωγβ −==  

   Motion in a solid fits the equation 

                   ∇ =T
u

ρ
∂
∂

2

2t
  

where T is stress tensor. To solve this equation for any particular case it is necessary to express 
the stress in terms of displacement and its derivatives. In perfectly elastic medium this relation is 
expressed by the Hooke’s law.  As shown above, in the case of homogeneous isotropic medium 
the equation of motion is reduced to the following 
  

                   ( )λ μ μ ρ
∂
∂

+ ∇ − =2
2

2div rotrot
t

u u
u

, 

 
The solution is non-attenuated wave. 
   In realistic media the relationship between stress and strain is more complicated than that 
corresponding to the Hooke’s law. Various properties of realistic materials lead to different 
relationships between stress and strain,– so-called constitutive equations, – which describe 
behavior of the material when a stress is applied. A constitutive equation defines   rheological 
model. 
   We consider the main rheological models used for analysis of oscillations and waves in solids. 
  Kelvin-Voight (viscoelastic) model.  This model assumes existence of viscous coupling between 
particles in addition to elastic forces. Viscous forces are proportional to the velocity of strain. 
The relationship between stress and strain is as follows: 

              
τ με η

∂ε
∂

σ λθ με η
∂θ
∂

η
∂ε
∂

ik ik
ik

ii ii
ii

t

t t

= +

= + + ′ +2 2
        

     ( )θ = divu  
This model can be represented by a simple mechanical analogue: elastic element (spring) and 
viscous element (a piston pressed into viscous fluid) connected in parallel. If we apply a stress to 
such system at some moment, the strain arises not immediately, but increases gradually. The 
same happens if the stress is suddenly taken away: the strain would vanish gradually. 
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The relationship between stress and strain may be written in another form: 
 

                         τ μ ε
ε

ε= +
⎛
⎝
⎜

⎞
⎠
⎟T

d
dt

 

 
 
The strain under constant stress relaxes: 

                        ( )ε ε ε= − −
o

t Te1 /

Tε  is the relaxation time. For small Tε   we obtain the Hooke's law. 
Maxwell model. This model is a particular case of the so-called after-effect models, in which the 
stress is assumed to relate not only with the strain at the same moment, but also with the history 
of strain behavior at previous time:    

               τ με ϕ ξ ε ξ ξik ik ik t d= − −
∞

∫ ( ) ( )
0

                      (40)   

ϕ(ξ)  is the so-called creeping function. Various rheological models correspond to various 
creeping function. 

 If  ϕ ξ
μ

ξ
τ

τ( ) exp( / )= −
T

T  (for pressure the Hooke's law is kept), we obtain the Maxwell model. 

Substituting this function to the formula (40) and integrating by parts, we  obtain                

                               
d
dt T

d
dt

τ τ
μ

ε

τ
+ =  

The constant Tτ is the relaxation time of stress under a constant strain: 
               τ τ τ= −0 exp( / )t T  
The Maxwell model is valid only for shear strain. The figure below shows the mechanical 
analogue of the Maxwell model, as well as behavior of strain under a constant stress, 
 
 

 29



 30

τ

t

ε

 
Standard linear solid. This model combines the both dissipation mechanisms, so that the 
relationship between stress and strain is following:  

                τ
τ

μ ε
ε

τ ε+ = +T
d
dt

T
d
dt

( ) 

 
Mechanical analogue of this model is shown below: 
 
 
 
 
 

 
In this model the strain is relaxed under a constant stress, and the stress is relaxed under a 
constant strain.  
 
     4.2. Propagation of harmonic waves. 
 
   It is possible to derive the equation of motion in a form 

             2

2

)(
t∂

∂
=

uuL ρ  

only in some particular cases of anelasticity, - for example for viscoelastic medium. But  
it is easy to study propagation of harmonic waves in any linear model. 
   Let us consider harmonic oscillation in various rheological models:  
         u u r= ( ) exp( )i tω  
Time dependence of strain is of the same form: 
           ε ε ω= ( ) exp( )r i t   
For Kelvin-Voight model 
          τ μ ω ε ω μ ω εε ε( , ) ( ) ( ) exp( ) ( ) ( ,r r )rt i T i t i T t= + = +1 1  
  For Maxwell model  
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For standard linear solid: 
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This for all cases the relationship between stress and strain is formally coincides with the Hooke's 
law, but the elastic modules are complex and depend on frequency. The frequency dependence is 
different for different models. Therefore in analysis of wave propagation of harmonic waves in 
anelastic media we may formally use the inferences obtained for perfectly elastic medium. 
   Consider propagation of a plane harmonic wave along x-axis: 
  
                A x t A i t x V( , ) exp[ ( / )]= −0 ω  
If the modules are complex, the wave velocity V should be also complex: 
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Then 
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ω ω           ( 41 ) 

This shows that the wave attenuates with distance, and its velocity depends on frequency: 
V V= ( )ω . Attenuation and dispersion are the main properties of the waves propagating in 
anelastic media. 
      Using the wave number k we can represent the plane wave in the form 
        A x t A i t kx( , ) exp[ ( )]= −0 ω      
where the wave number k  is complex: k k ik= − *, so that the attenuation is determined by the 
exponential term exp(-k*x), being the attenuation coefficient. It depends on frequency.  
  Quality factor.   Instead of the attenuation coefficient k* seismologists use the characteristics, 

which is called the quality factor Q. It is a measure of energy loss at a distance   k − =1

2
λ
π

,  

where  λ is the wave length: 
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The larger Q,, the more proximate the medium to the perfectly elastic. Because 
 

k
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 ,  then  Q
k VT− =1

*

π
 , and consequently, k

QVT
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π
. Thus, the term describing the 

attenuation is exp( )−
π

QVT
. In inhomogeneous medium, where both velocity and Q are functions 

of coordinates, it is exp −
⎛

⎝
⎜
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  . 
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    Now we show how the quality factor Q is expressed in terms of the real and imaginary parts of 
the complex modules, and how to relate it with the relaxation times. Consider a shear wave. The 
complex velocity is expressed through the complex shear module as follows: 
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It follows from Q
k
k

− =1 2 *

 that Q
V
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2( )* *μ
μ

. Knowing the expressions for complex 

modules for different rheological models we can write the quality factor as a function of 
frequency and relaxation times: 
 
 For Kelvin-Voight's model      Q T− =1 ω ε . 
 For Maxwell model                 Q T= ω τ  

 For standard linear solid       
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   It seems that Q should noticeably change with frequency. However seismological observations 
indicate that Q does not practically depend on frequency over a large range of frequencies. This 
is because of a variety and scale of attenuation processes in real materials. The most general 
model is the standard linear solid, for which the frequency dependence of   is as follows: 1−Q
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The peak in  is known as a Debye peak. It corresponds to the frequency 1−Q ω
ε τ

0

1
=

T T
, and 

the value of   at this frequency  is equal to 1−Q
1
2

T
T

T
T

ε

τ

τ

ε
−

⎛

⎝
⎜

⎞

⎠
⎟.  The superposition of numerous 

Debye peaks for various relaxation processes , each with a different frequency range, produces a 
broad, flattened absorption band.  
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   5.  Diffraction of elastic  waves 
 
  In the wide sense diffraction is deviation from geometroseismic propagation of the waves. The 
laws of geometric seismic are true when a family of the rays is regular: the rays cover the space 
completely and they do not form shadow zones. Diffraction occurs near the boundaries of 
shadow zones.  We shall consider three examples of diffraction of short periodic waves. 
 
  5.1. Caustic 
 
  Caustic is an envelope of the rays. It divides the space to illuminates zone and shadow zone. 
The rays cover the illuminated zone, where two rays cross a given point: coming to and off the 
caustic (see the figure below) 
 

   

illuminated zone

shadow zone

caustic

 
 
 
  The wave field cannot be discontinuous; therefore we may expect a perturbation in the shadow 
zone in the vicinity of the caustic. In fact, asymptotic solution of the wave equation (or equation 
of motion of elastic medium) in a narrow vicinity of the caustic describes a wave  propagating 
along the caustic, whose amplitude varies in the direction perpendicular to the caustic as the Airy 
function. The amplitude of such a wave depends on frequency, velocity and effective radius of 
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curvature of the caustic (effective curvature is a sum of curvatures of the caustic and the ray 
tangent to the caustic). In 2D case the wave field in the vicinity of the caustic is determined by 
the formula 

     ( ))((exp2);,( 3/2
3/1

2 stn
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CAitsnU τωω −⎟
⎟
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⎛−=       (43) 

where s is a distance along the caustic, n is a distance perpendicular to the caustic (n<0 in the 
shadow zone) , R is effective radius of curvature of the caustic, τ(s) is travel time along he 
caustic.  
    Airy function oscillates at negative 
argument and decays approximately 
exponentially at positive argument. 
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5.2. Diffraction at sharp edges 
 
Now we shall analyze  the waves diffracted at sharp ends of boundaries. An  example is 
the case when a plane wave impinges to an opaque boundary : 
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The edge can be regarded as a source for diffracted waves. 
   Analysis of the wave field including the diffracted waves is based on the 
representation theorem that expresses the wave field within some volume in terms of 
displacement and stress on the boundary of the volume. 
 
Representation theorem  
 
  Since the diffracted waves depend on frequency we may consider only harmonic 
waves. At S given are a displacement US and a traction Tn  . The displacement US  and 
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the traction Tn cause a wave field within Ω.  For simplicity we suppose that no body 
forces act within this volume. The wave field in Ω satisfies the equation 
  
                                                     (44) 02 =+∇ UT ρω
Define the Green function , which is a solution of the equation ),()( ξxg q

                                           (45) q
qq exg )(2 ξτ −−=+∇ δρω

where τq is the stress tensor corresponding to the Green function. 
   Let T and V correspond to any two different solutions of (44), T being a symmetric 
tensor. Then according to the Gauss formula we obtain 
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  To transform I  we replace ∇τ1
q и ∇Т from the equations of motion: 
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Because of symmetry of this expression in respect to U and g , we see that I2 =0. 
  So finally  
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    This is the representation theorem for harmonic waves. 
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    Green function for isotropic homogeneous medium 
 
  To apply the formulas (43) and (47) for determining the wave field it is necessary to 
know the Green tensor . It should be noted that the Green tensor can be 
determined in different ways, depending on the boundary conditions at S. In case of a 
bounded volume it is convenient to assume either displacement or traction equal to zero 
at S , depending on which characteristics of the field (displacement or traction) is given 
at S. In case of unbounded medium it is sufficient to take into account the radiation 
condition. In general case of the medium the Green function can be determined only 
approximately, but in homogeneous isotropic medium the exact expression for the 
Green function exists. It can be easily obtained from  the Stokes’ formula for the wave 
field excited by a point force located in the origin of coordinates. Remind that we 
consider harmonic waves and omit the time factor exp(iωt).  
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The Green function  is obtained from (48)  if we replace ),,( ξxg q ξ−= xR ,  
),(cos Rq ee=θ . 

  The first term in the right-hand side of (48) decays with distance more rapidly than the 
last two ones, so usually, if the source is far away from the point of observation, it is 
sufficient to consider only the second and the third terms.  
 
    Application of the representation theorem to analysis of diffracted waves 
 
  In this section we shall consider a simple example how the representation theorem is 
applied to the problems of diffraction of the waves. We shall analyze the waves 
diffracted at sharp ends of boundaries. The simplest example is the case when a plane 
wave impinges to an opaque half-plane screen, which does not transmit P-wave,  placed 
along xy-plane  at ∞<<∞−−<<∞− yXx     ,, . 
  A plane wave is incident normally to this plane along positive direction of z-axis. We 
shall determine the wave field in the point x=0, z=H. 
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The incident wave is expressed as 
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                      (49) )exp()( ikzzexU =
where k=ω/a. This is valid in the half-space z<0. The stress at z=0 is 
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is –z, therefore at the boundary ))2(  ,0  ,0( μλ +−=−= ikzn TT . The displacement at 
z=0 is U=(0,0,1).  
   For this particular case formula (47) has the following form: 
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  To use the formula (50) we have to determine the Green’s function and the 
corresponding stress. Assuming the frequency to be sufficiently high (the wavelength 
much smaller than the distance from the ‘source’ M to the boundary) we may keep only 
the main term in the Green’s function (decaying as 1/R). Then the field of P wave 
excited by a unit force placed at M and directed along z-axis is 
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 To calculate   we take into account that  for high frequencies (and for large k) it is 
sufficient to differentiate  in respect to r only the exponential term. Then 
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Substituting all these expressions to (50) we obtain 
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To estimate this integral we use the method of stationary phase. The stationary point is   
. In this point r=H. According to the method of stationary phase we 

represent the phase function as series in the vicinity of the stationary point and keep 
only terms of the second order. Then we obtain 
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(It is taken into account that 
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     The integral  can be expressed through the Fresnel integral ∫
∞
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Substituting (52) to (51), and taking into account that )()(   ,
2

)( zFzFiF −=−=∞  we 

finally obtain 
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where  
k
HRF

π
=  is the Fresnel radius. The modulus of this function is shown below. 

    

1
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Thus, under the edge (X=0) the amplitude of the transmitted wave is twice as less of the 
amplitude of the incident wave. When the screen is moved to the left (X>0) the 
amplitude increases and exceeds that of the incident wave. If the screen is moved to the 
right, the amplitude decreases gradually to zero. 
 
   It is also possible to estimate a phase of the total transmitted wave. The total field may 
be represented as a superposition of ‘pure’ transmitted wave and diffracted wave. If the 
transmitted field is deducted from the total field, we obtain a field of the diffracted 
wave. It can be shown that a phase of this wave is approximately equal to  
kR+π/4, where R is a distance from the point M  to the edge of the screen. Thus the edge 
of the screen may be regarded as a source of the diffracted wave. 
 
  

U=Uinc+UdiffU=Udiff  
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  5.3. Diffraction at smooth boundaries 
 
 If there is an opaque obstacle with 
smooth boundary, a shadow zone is 
formed behind it. 
  Diffraction effects are different in a 
narrow vicinity of the shadow boundary 
(so-called semi-shadow) and in a deep 
shadow.  Analysis of the waves in the 
semi-shadow is rather complicated, so 
that we restrict our consideration only 
by the effects in the deep shadow.   
  The boundary ray in the point tangent 
to the obstacle (P) is doubled: a part 
continues to propagate ahead forming a 
boundary of geometrical  shadow, and 
another part is sliding along the 
boundary of the obstacle. In the process 
of sliding the wave losses its energy:  

P
Q

 
 
 

in each point the rays срываются from the boundary, and propagate later according to 
the geometrical seismic. Decay of the sliding wave amplitude at a segment from P to Q 
is determined by the following factor 
 

   ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
− ∫

Q

P cR
ds

Qj
Pj

3/13/2
3/1exp

)(
)( ξω  

where j is geometrical spreading at the surface of the obstacle, R is effective radius of 
curvature of the surface, c – wave velocity, ξ is a constant. Thus we may calculate the 
amplitude in the point Q, and then use `formulas of the ray theory. 
  Similar pattern of the rays, and consequently behavior of the diffraction wave field, is 
observed when the rays are tangent to a wave guide (low velocity zone). 
 
 

shadow zoneV(z)
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   Consideration of these three examples shows that the diffraction effects can be 
substantially different.   

 40


	    Here we shall derive the expression for the energy flux in general case. 
	    For simplicity we assume that no external forces act in the medium, then the equation of motion is 
	   It is possible to derive the equation of motion in a form 
	   5.  Diffraction of elastic  waves 
	Define the Green function  , which is a solution of the equation 



