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Abstract

Major advances in Structural Seismology during the last twenty years, are related to the emergence

and development of more and more sophisticated 3D imaging techniques, usually named seismic to-

mography, at different scales from local to global. Progress has been made possible by the rapid

developments in seismic instrumentation and by the extensive use of massive computation facilities.

The scope of this chapter is limited to the tomographic elastic structure of the upper mantle. In order

to obtain a good spatial coverage of this part of the Earth, it is necessary to make use of dispersive

properties of surface waves. Most global tomographic models are still suffering severe limitations in

lateral resolution, due to the imperfect data coverage, and to crude theoretical approximations. It

is usually assumed that the propagating elastic medium is isotropic, which is a poor approximation.

It is shown in this chapter how to take account of anisotropy of Earth’s materials and a complete

tomographic technique including the resolution of the forward problem and of the inverse problem

is presented. Consequently, by including other geological constraints, it is possible to map not only

the 3D temperature heterogeneities but also the flow field within the convecting mantle. In order

to improve the lateral resolution of global models, the installation of ocean bottom observatories is

necessary and constitutes a new challenge for this new century. The next step will also consist in

systematically applying recent developments in numerical modeling and theory to seismic data, in

order to use the complete information provided by seismic waveforms and to incorporate physical and

chemical constraints provided by other fields of earth sciences.

Keywords: Tomography, isotropic model, seismic anisotropy, S-wave splitting, surface waves, Rayleigh

wave, Love wave, broadband seismology, normal modes, inverse problem, upper mantle, lithosphere,

asthenosphere, transition zone.
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Introduction

Twenty years ago, the first global isotropic tomographic models of the mantle were published (Wood-

house and Dziewonski, 1984; Dziewonski, 1984). Since that time, many new tomographic models were

published, and a large family of techniques was made available. This important progress was made

possible by the extensive use of computers which can handle very large datasets and by the availabil-

ity of good quality digital seismograms recorded by broadband seismic networks such as GEOSCOPE

(Romanowicz et al., 1984), IRIS (Smith, 1986) and all networks coordinated by the FDSN (Federation

of Digital Seismograph Networks; Romanowicz and Dziewonski, 1986). Thanks to the installation

of modern digital networks, it is now possible to map the whole earth from the surface down to

the center of the Earth by seismic tomography. However, most tomographic techniques only make

use of travel times or phase information in seismograms and very few use the amplitude, even when

seismic waveforms are used (Woodhouse and Dziewonski, 1984; Li and Romanowicz, 1996). Global

tomographic models have been improved over years by an increase in the number of data and more

importantly by using more general parameterizations, now including anisotropy (radial anisotropy in

Nataf et al. (1986); general slight anisotropy in Montagner and Tanimoto (1990, 1991)) and to a lesser

extent anelasticity (Tanimoto, 1989; Romanowicz, 1990). This chapter is focused on the imaging of

large scale (>1000km) lateral heterogeneities of velocity and anisotropy in the upper mantle (0-660km

depth) where the lateral resolution is the best thanks to surface waves providing an almost uniform

lateral and azimuthal coverage, particularly below oceanic areas. We will discuss how tomographic

imaging completely renewed our vision of upper mantle dynamics. It makes it possible to relate sur-

face geology and plate tectonics to underlying mantle convection, and to map at depth the origin of

geological objects such as continents, mountain ranges, slabs, ridges and plumes. The goal of this

chapter is not to review all contributions to this topic, but to underline the main scientific issues, to

present different approaches and to illustrate the different progress (partly subjectively) by some of

my results or by other more recent models. This chapter aims to show why a major step, which takes

a complete account of amplitude anomalies in the most general case and which will enable to map

shorter scale heterogeneities, is now possible and presently ongoing.

1 Effects of seismic velocity and anisotropy on seismograms

For theoretical and practical reasons, the Earth was considered for a long time, as composed of isotropic

and laterally homogeneous layers. While an isotropic elastic medium can be described by 2 independent
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elastic parameters (λ and µ Lamé parameters), the cubic symmetry requires 3 parameters, but the most

commonly used anisotropic medium (transverse isotropy with vertical symmetry axis) necessitates 5

independent parameters (Love, 1927: Anderson, 1961) and the most general elastic medium requires

21 independent parameters. However, since the sixties, it was recognized that most parts of the Earth

are not only laterally heterogeneous but also anisotropic. Though the lateral heterogeneities of seismic

velocities were used for a long time for geodynamical applications, the importance of anisotropy for

understanding geodynamic processes has only been recognized recently.

Seismology is an observational field based on the exploitation of seismic recordings of the displacement

(velocity or acceleration) of the Earth induced by earthquakes. Broadband 3-component high dynamic

seismometers have been installed in more than 500 stations around the world during the last 20 years

(see overview of Romanowicz and Dziewonski, this issue). Thanks to progress in instrumentation and

theoretical developments, it is now possible to observe and to take a simultaneous account of the

effects of lateral heterogeneities of velocity and anisotropy on seismograms.

1.1 First order perturbation theory

The basic equation which governs the displacement u(r, t) is the elasto-dynamics equation:

ρ0
d2ui
dt2

=
∑
j

σij,j + FIi + FEi (1)

FIi et FEi represent respectively the whole ensemble of applied inertial and external forces (see

Takeuchi and Saito (1972) or Woodhouse and Dahlen (1978) for a complete description of all terms).

Generally, by neglecting the advection term, this equation is written in a simple way:

(ρ0∂tt −H0)u(r, t) = F(rS, t) (2)

where H0 is an integro-differential operator and F expresses all forces applied to the source volume in

rS at time t (considered as external forces). F is assumed to be equal to 0 for t < 0. In the elastic

case, there is a linear relationship between σij and the strain tensor εkl. σij =
∑

kl Γijklεkl (+ terms

related to the initial stress). Γijkl is a 4th-order tensor, often written in its condensed form Cij as a

6x 6 matrix. By using the different symmetry conditions Γijkl = Γjikl = Γijlk = Γklij , the tensor Γ is

shown to have 21 independent elastic moduli in the most general anisotropic medium. In an isotropic

medium, this number reduces to 2, the Lamé coefficients λ and µ.
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When solving for the free oscillations of the Earth F = 0. The solution u(r, t) of equation (2) can be

calculated for a spherically symmetric non rotating reference Earth model associated with the operator

H0, according to the equation:

ρ0∂ttu(r, t) = H0u(r, t) (3)

The solution of equation (3) is beyond the scope of this chapter and is described elsewhere in the

treatise (Woodhouse). The eigenvalues of the operator H0 are equal to −ρ0nω
2
` where nω` is the eigen-

frequency characterized by 2 quantum numbers n and `, respectively termed radial and angular orders.

The corresponding eigenfunctions num` (r, t) depend on 3 quantum numbers n, `, m, where m is the

azimuthal order, with the following property −` ≤ m ≤ `. Therefore, for a given eigenfrequency nω`

calculated in a spherically symmetric Earth model, 2` + 1 eigenfunctions can be defined. The eigen-

frequency nω` is said to be degenerate, with a degree of degeneracy 2`+ 1. There is a complete formal

similarity with the calculation of the energy levels of the atom of hydrogen in quantum mechanics.

The eigenfunctions num` (r, t) of the operator H0 are orthogonal and normalized.

The important point is that the basis of functions num` (r, t) is complete. This implies that any

displacement at the surface of the Earth can be expressed as a linear combination of these eigenfuctions:

u(r, t) =
∑
n,`,m

na
m
` nu

m
` (r, t)

Therefore, these eigenfunctions can be used to calculate the synthetic displacement at any point r,

at time t, due to a force system F in the source volume. For a point force F at point rS , a step time

function and its associated moment tensor M, which is a good starting model for earthquakes, the

solution of the equation (2) is given by (Gilbert, 1971):

u(r, t) =
∑
n,`,m

num` (r)
(1− cosnω`t)

nω2
`

e
−nω`t

2Q (M : nε
m
` )rS (4)

where ε is the deformation tensor. Since equation (4) is linear in M, it can be easily generalized to

more complex spatial and temporal source functions, and can be rewritten:

u(r, t) = G(r, rS, t, tS)M(rS, tS)

where G(r, rS, t, tS) is the Green operator of the medium. Normal mode theory is routinely used to

calculate synthetic seismograms at long periods (T ≥ 40s.) and Centroid Moment Tensor solutions

(Dziewonski et al., 1981).
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An example of real and synthetic seismograms is presented in figure 1. However, there are still some

discrepancies (usually frequency dependent) between the observed and synthetic seismograms. The

simplest way to explain the observed phase shifts (time delays) is to remove the assumption that

the Earth is spherically symmetric, i.e. there are lateral heterogeneities between the source and the

receiver. The next step is to characterize these lateral heterogeneities. Since the agreement between

synthetic and observed seismograms is good at long periods (T ≥ 40s), we can reasonably infer that

the amplitude of heterogeneities is small (< 10%). Behind the surface wave train, a long coda is

usually observed, interpreted as scattered waves. However, when filtering out periods shorter than

40s, this coda vanishes, which means that the scattering effect is only large in the shallowest regions

of the Earth (primarily the crust, and the upper lithosphere) but that it is probably negligible at

larger depths. However, some groups are starting to use the information contained in these coda

waves (Aki and Richards, 1980; Snieder et al., 2002), and even from seismic noise (Shapiro et al.,

2005) for imaging the crust. For the sake of simplicity, our study is limited to long period surface

waves and it is hypothesized that the scale of lateral heterogeneities is large compared with the

seismic wavelength. This point will be discussed in section 2.1. A second hypothesis which must be

discussed, is the isotropic nature of the Earth materials. Actually, it is a poor assumption, because

seismic anisotropy can be unequivocally observed at different scales. Finally, the influence of lateral

variations in attenuation must also be taken into account and will be discussed in another chapter

(Seismic Attenuation in the Earth, Romanowicz and Mitchell, this volume).

1.2 Effect of anisotropic heterogeneities on normal modes and surface waves

Different geophysical fields are involved in the investigation of the manifestations of anisotropy of

Earth materials: mineral physics and geology for the study of the microscopic scale, and seismology

for scales larger than, typically, one kilometer. The different observations related to anisotropy, at

different scales are reviewed in Montagner (1998) and in Park and Maupin (this volume).

Different kinds of observations have been used for investigating anisotropy in the upper mantle: the

Rayleigh-Love wave discrepancy (Anderson, 1961), the azimuthal variation of phase velocities of sur-

face waves (Forsyth, 1975) and the shear-wave splitting particularly for SKS waves (Vinnik et al.,

1992). The lack of stations in oceanic areas explains why it is necessary to use surface waves to

investigate upper mantle structure (isotropic or anisotropic) at the global or regional scales.

In the simplest case (fundamental modes, no coupling between branches of Rayleigh and Love waves),

the frequency shift δω
ω (and the corresponding phase velocity perturbation δV

V ), for a constant wavenum-
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ber k can be written by applying Rayleigh’s principle:

δω

ω
|k =

δV

V
|k =

1
2ω

∫
Ω ε
∗
ij δΓijkl εkl dΩ∫

Ω ρ0num`
∗
num` dΩ

(5)

where εij and δΓijkl are respectively the deformation and the deviations of elastic tensor components

from a SNREI model (spherically symmetric, non rotating, elastic, isotropic), and num` the eigenfunc-

tions as defined in the previous section.

We only consider the propagation of surface waves in a plane-layered medium for a general slight elastic

anisotropy, but it can be easily extended to the spherical Earth (Mochizuki, 1986; Tanimoto,1986;

Romanowicz and Snieder, 1988; Larson et al., 1998; Trampert and Woodhouse, 2003). Smith and

Dahlen (1973, 1975), found that, to first order in anisotropy and at frequency ω, the azimuthal

variation of local phase velocity (Rayleigh or Love wave) can be expanded as a Fourier series of the

azimuth Ψ along the path and is of the form:

V (ω, θ, φ,Ψ)− V0(ω,Ψ) = α0(ω, θ, φ) + α1(ω, θ, φ)cos2Ψ + α2(ω, θ, φ)sin2Ψ

+α3(ω, θ, φ)cos4Ψ + α4(ω, θ, φ)sin4Ψ (6)

where V0(ω,Ψ) is the reference velocity of the unperturbed medium, and Ψ is the azimuth along the

path with respect to the North direction. Montagner and Nataf (1986) present the expressions for the

different azimuthal coefficients αi(ω, θ, φ) as depth integral functions dependent on 13 simple linear

combinations of standard cartesian elastic coefficients Cij . The Appendix shows how to relate Γijkl to

Cij and presents detailed calculation of azimuthal terms for Love waves in the geographical coordinate

system.

Constant term ( 0 Ψ-azimuthal term: α0)
A = ρV 2

PH = 3
8(C11 + C22) + 1

4C12 + 1
2C66

C = ρV 2
PV = C33

F = 1
2(C13 + C23)

L = ρV 2
SV = 1

2(C44 + C55)

N = ρV 2
SH = 1

8(C11 + C22)− 1
4C12 + 1

2C66

2 Ψ-azimuthal term:

α1 cos 2Ψ α2 sin 2Ψ

Bc = 1
2(C11 − C22) Bs = C16 + C26

Gc = 1
2(C55 − C44) Gs = C54

Hc = 1
2(C13 − C23) Hs = C36
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4 Ψ-azimuthal term:

α3 cos 4Ψ α4 sin 4Ψ

Ec = 1
8(C11 + C22)− 1

4C12 − 1
2C66 Es = 1

2(C16 − C26)

where indices 1 and 2 refer to horizontal coordinates (1: North; 2: East) and index 3 refers to vertical

coordinate. ρ is the density, VPH , VPV are respectively horizontally and vertically propagating P-wave

velocities, VSH , VSV horizontal and vertical polarized S-wave velocities. So, the different parameters

present in the different azimuthal terms are simply related to elastic moduli Cij .

From a practical point of view, once source phase is removed and assuming that the scale of hetero-

geneities is larger than the wavelength, the total phase φt (and the travel time) between the epicenter

E and the receiver R, is easily related to the measurement of phase velocity Vd(ω), and therefore to

the local phase velocity V (ω, θ, φ,Ψ):

φt = ω tE→R =
ω∆
Vd(ω)

= ω

∫ R

E

ds

V (ω, θ, φ,Ψ)
(7)

Therefore, equations (6) and (7) define the forward problem in the framework of first order perturbation

theory. We will see in the next section how to solve the inverse problem. That means that, ideally,

surface waves in the plane case have the ability to provide information on 13 elastic parameters,

which emphasizes the enormous potential of surface waves in terms of geodynamical and petrological

implications. There are only 13 elastic moduli among 21, since propagation of surface waves is invariant

against rotation by π which corresponds to a monoclinic symmetry.

The 0-Ψ term corresponds to the average over all azimuths and involves 5 independent parameters,

A, C, F, L, N, which represent the equivalent transversely isotropic medium with a vertical symmetry

axis (more simply named VTI or radial anisotropy). It must be noted that it is possible to retrieve

the equivalent isotropic shear modulus from these 5 parameters. By using a Voigt average, the shear

modulus µiso is equal to:

µiso = ρV 2
Siso

=
1
15

(C11 + C22 + C33 − C12 − C13 − C23 + 3C44 + 3C55 + 3C66)

According to the expressions of A,C, F, L,N in terms of elastic moduli, µiso = 1
15(C+A−2F+6L+5N)

So we can see that the equivalent isotropic velocity depends not only on VSV and VSH , but also on

P-wave velocity and anisotropy (φ = C
A ) and on η = F

A−2L . By rewriting this expression µiso =
1
15(C + (1− 2η)A+ (6 + 4η)L+ 5N), neglecting anisotropy in P-wave (φ = 1) and assuming η = 1, it

is found that µiso = ρV 2
Siso
≈ 2

3L + 1
3N = 2

3ρV
2
SV + 1

3ρV
2
SH . Naturally, this choice is partly arbitrary,

since usually, there is no S-wave anisotropy without P-wave anisotropy. Another way might consist
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in using correlations between anisotropic parameters for petrological models as derived by Montagner

and Anderson (1989a).

The other azimuthal terms (2-Ψ and 4-Ψ) depend on 4 groups of 2 parameters, B, G, H, E respectively

describing the azimuthal variation of A, L, F, N. These simple parameters make it possible to describe

in a simple way the two seismically observable effects of anisotropy on surface waves, the ”polarization”

anisotropy (Schlue and Knopoff, 1977) and the azimuthal anisotropy (Forsyth, 1975).

Another important point in these expressions is that they provide the partial derivatives for the radial

and azimuthal anisotropy of surface waves. The corresponding kernels and their depth dependence

are plotted in Montagner & Nataf (1986) (Figures A2-A3). These partial derivatives of the different

azimuthal terms with respect to the elastic parameters can be easily calculated by using a radial

anisotropic reference Earth model, such as PREM (Dziewonski and Anderson, 1981). The partial

derivatives of the eigenperiod 0T` with respect to parameter p, p
T
∂T
∂p can easily be converted into phase

velocity partial derivatives by using:

p

V
(
∂V

∂p
)T = −V

U

p

T
(
∂T

∂p
)k

For example, the parameters Gc and Gc have the same kernel as parameter L (related to VSV ) as

shown by comparing the expressions ofR1, R2 and R3 in equation (29) of Appendix. For fundamental

modes, the calculation of kernels shows that Love waves are almost insensitive to VSV (Figure A2) and

Rayleigh waves to VSH . Rayleigh waves are the most sensitive to SV -waves. However, as pointed out

by Anderson and Dziewonski (1982), the influence of P-waves (through parameters A and C) can be

very large in an anisotropic medium. The influence of density is also very large for Love and Rayleigh

waves, but as shown by Takeuchi and Saito (1972), it is largely decreased when seismic velocities are

inverted for, instead of elastic moduli and density.

1.3 Comparison between surface wave anisotropy and SKS splitting data

It can be noted that some of the linear combinations of elastic moduli Cij , derived from surface waves

in the previous section, also come up when considering the propagation of body waves in symmetry

planes for a weakly anisotropic medium (see for example Crampin et al. (1984) and their azimuthal

dependence

ρV 2
P = A+Bc cos 2Ψ +Bs sin 2Ψ + Ec cos 4Ψ + Es sin 4Ψ

ρV 2
qSH = N − Ec cos 4Ψ− Es sin 4Ψ

ρV 2
qSV = L+Gc cos 2Ψ +Gs sin 2Ψ
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where VqSH and VqSV corresponds respectively to quasi-SH and quasi-SV waves.

A global investigation of anisotropy inferred from SKS body wave splitting measurements (delay times

and directions of maximum velocities) has been undertaken by different authors (Vinnik et al., 1992;

Silver, 1996; Savage, 1999). Unfortunately, most SKS measurements have been done in continental

parts of the Earth, and very few in oceans. It turns out that a direct comparison of body wave

and surface wave datasets is now possible (Montagner et al., 2000). If the anisotropic medium is

assumed to be characterized by a horizontal symmetry axis with any orientation (that is a very strong

assumption which can be alleviated as shown by Chevrot et al., 2004), and for a vertically propagating

SKS wave, a synthetic dataset of SKS delay times and azimuths can be calculated from the global

distribution of anisotropy derived from surface waves, by using the following equations:

δtSKS =
∫ h

0
dz

√
ρ

L
[
Gc(z)
L(z)

cos(2Ψ(z)) +
Gs(z)
L(z)

sin(2Ψ(z))] (8)

where δtSKS is the integrated travel time for the depth range 0-h for a propagation azimuth Ψ, where

the anisotropic parameters Gc(z),Gs(z) and L(z) are the anisotropic parameters retrieved from surface

waves at different depths. It is remarkable to realize that only the G-parameter (expressing the SV-

wave azimuthal variation) is present in this equation. From equation (8), we can infer the maximum

value of delay time δtmaxSKS and the corresponding azimuth ΨSKS :

δtmaxSKS =

√{∫ h

0
dz

√
ρ

L

Gc(z)
L(z)

}2

+
{∫ h

0
dz

√
ρ

L

Gs(z)
L(z)

}2

(9)

tan(2ΨSKS) =

∫ h
0 dz

Gs(z)
L(z)∫ h

0 dz
Gc(z)
L(z)

(10)

However, equation (8) is approximate and only valid when the wavelength is much larger than the

thickness of layers. It is possible to make more precise calculations by using the technique derived for

2 layers by Silver & Savage (1994) or by using the general expressions given in Rumpker and Silver

(1998), Montagner et al. (2000), Chevrot et al., 2004).

With equations (9) and (10), a synthetic map of the maximum value of delay time δtmaxSKS can be

obtained by using an 3D anisotropic surface wave model. A detailed comparison between synthetic

SKS derived from AUM (Montagner & Tanimoto, 1991) and observed SKS (Silver, 1996) was presented

in Montagner et al. (2000). Figure 2 shows such a map for the Earth centered in the Pacific, by

using the anisotropic surface wave model of Montagner (2002) derived from the data of Montagner and

Tanimoto (1991) and Ekström et al. (1997). First of all, the comparison shows that both datasets are
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compatible in magnitude but not necessarily in directions. Some contradictions between measurements

derived from surface waves and from body waves have been noted. The agreement of directions is

correct in tectonically active areas but not in old cratonic zones. The discrepancy in these areas results

from the rapid lateral change of directions of anisotropy at a small scale. These changes stem from

the complex history of these areas, which have been built by successive collages of continental pieces.

It might also result from the hypothesis of horizontal symmetry axis, which was shown to be invalid

in many areas (Plomerova et al., 1996). The positive consequence of this discrepancy is that a small

scale mapping of fossile anisotropy in such areas might provide clues for understanding the processes

of growth of continents and mountain building opening a new field, the paleoseismology.

Unloke surface waves, SKS-waves have a good lateral resolution, and are sensitive to the short wave-

length anisotropy just below the stations. But their drawback is that they have a poor vertical resolu-

tion. On the other hand, global anisotropy tomography derived from surface waves only provides long

wavelength anisotropy (poor lateral resolution) but enables the location at depth of anisotropy. The

long wavelength anisotropy derived from surface waves will display the same direction as the short

wavelength anisotropy inferred from body waves only when large scale vertical coherent processes are

predominant. As demonstrated by Montagner et al. (2000), the best agreement between observed

and synthetic SKS can be found when only layers in the uppermost 200km of the mantle are taken

into account. Moreover, tomographic models derived from surface waves looses resolution at depths

greater than 200km. In some continental areas, short scale anisotropy, the result of a complex history,

might be important and even might mask the large-scale anisotropy more related to present convec-

tive processes (see for example Marone and Romanowicz, 2006 for North America). From a statistical

point of view, good agreement is found between orientations of anisotropy and plate velocity motion

for fast-moving plates. The differences between anisotropy and tectonic plate directions are related to

more complex processes, as will be seen in section 3.

2 Upper mantle tomography of seismic velocity and anisotropy

We now show how to implement theory of section 1 from a practical but general point of view, and

how to design a tomographic technique in order to invert for the 13 different elastic parameters and

density. A tomographic technique necessitates to solve simultaneously a forward problem and an

inverse problem. By using the results of the previous section, it successively considers how to set the

forward problem, and how it is used to retrieve a set of parameters by inversion.
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2.1 Forward problem

First, it is necessary to define the data space d and the parameter space p. It is assumed that a

functional g relating d and p can be found such that:

d = g(p),

where d is the set of data (which samples the data space), and p the set of parameters.

Data Space: d

The basic dataset is made of seismograms u(t). We can try to directly match the waveform in the time

domain, or we can work in the Fourier domain, by separating phase and amplitude on each component

ui(t):

ui(t) =
∫ ∞
−∞

Ai(ω)ei(ωt−φi)dω

The approach consisting in fitting seismic waveforms is quite general but, from a practical point

of view, it does not necessarily correspond to the simplest choice. In a heterogeneous medium, the

calculation of amplitude and phase effects makes it necessary to calculate the coupling between different

multiplets (Li and Tanimoto, 1993; Li and Romanowicz, 1995; Marquering et al., 1996), which is very

time consuming. When working in Fourier domain, different time windows can be considered and the

phase of different seismic trains, body waves and surface waves can be separately matched (Nolet, 1990;

Lévêque et al., 1991) under drastic simplifying assumptions. Figure 1 showed an example of observed

and synthetic seismograms, the latter obtained by normal mode summation with the different higher

modes. The fundamental wavetrain is well separated from other modes at large epicentral distances.

The part of the seismogram corresponding to higher modes is more complex and shows overlap of these

modes in the time domain. Therefore, from a practical point of view, the fitting of the fundamental

mode wavetrain will not cause any problem and has been widely used in global mantle tomography.

The use of higher mode wavetrains and the separation of overtones is much more difficult. The

first attempts were performed by Nolet (1975), Cara (1978), Okal and Jo (1985) and Dost (1990) by

applying a spatial filtering method. Unfortunately, all these techniques can only be applied in areas

where dense arrays of seismic stations are present, i.e. in North America and Europe. By using a set

of seismograms recorded at one station but corresponding to several earthquakes located in a small

source area, Stutzmann and Montagner (1993) showed how to separate the different higher modes.

A similar approach was also followed by Van Heijst and Woodhouse (1997). We only detail in this

paper the technique which was designed for fitting the fundamental mode wavetrain and the reader is

referred to Stutzmann and Montagner (1993, 1994), Van Heijst and Woodhouse (1997) and Beucler et

al. (2003) for the description of the recovery of higher mode dispersion properties and to Romanowicz
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(2002) for a general overview. Figure 3 presents an example of phase velocity dispersion for different

surface wave modes (fundamental and first higher modes (Beucler et al., 2003)) and how they compare

with previous investigations (Cara, 1978; Van Heijst and Woodhouse, 1997).

We take advantage of the fact that, according to the Fermat’s principle, the phase velocity pertur-

bation is only dependent to second order on path perturbations, whereas amplitude perturbation are

dependent, to first order, on these perturbations, which implies that the eigenfunctions must be re-

calculated at each iteration. Therefore, the phase is a more robust observable than the amplitude.

The amplitude A(ω) depends in a complex manner on seismic moment tensor, attenuation, scattering,

focusing effects, station calibration and near-receiver structure whereas the contribution of lateral het-

erogeneities of seismic velocity and anisotropic parameters to the phase φ(ω) can be easily extracted.

The dataset under investigation, is composed of propagation times (or phase velocity measurements

for surface waves) along paths: d = { ∆
V (ω)}.

On the other hand, the phase of a seismogram at time t is decomposed, as follows: φ = k.r+φ′0, where

k is the wave vector, φ′0 is the initial phase including several terms: φ′0 = φ0 +φS +φI , φS is the initial

source phase, φ0 is related to the number of polar phase shifts, φI is the instrumental phase. φ can be

measured on seismograms by Fourier transform. We usually assume that φS is correctly given by the

centroid moment tensor solution. For a path between epicenter E and receiver R with an epicentral

distance ∆, the phase φ is given by:

φ =
ω∆
Vobs

+ φ0 + φS + φI (11)

In the general case, we want to relate the observed phase velocity Vobs(ω) to the parameters of the

Earth model p(r, θ, φ). Data and 3D parameters can be related through integrals over the whole

volume of the Earth. But for computing reasons, it is usual to use a multistep approach, where we

first retrieve the local phase velocity V (ω, θ, φ) including its azimuthal terms, and then perform the

inversion at depth. These 2 steps can be reversed since the order of the integrations can be reversed.

It is necessary to consider the nature of the perturbed medium. Following the approach of Snieder

(1988), if the perturbed medium is at the same time smooth (long wavelength heterogeneities) and weak

(small amplitude of heterogeneities), the geometrical optics approximation (and ray theory) applies.

This hypothesis is not necessarily met within the Earth where some geological objects (slabs, mantle

plumes, ...) have a length scale which can be close to the seismic wavelength. In the approximation

of ray theory, the volume integral reduces to the curvilinear integral along the geometrical ray path.
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When ray theory is applicable:

φ− φ′0 =
ω∆

Vobs(ω)
=
∫ R

E

ωds

V (ω, θ, φ)
(12)

Where the integral is evaluated along the ray path between the epicenter E and the receiver R.

Following the results of the previous section, different approximations are implicitly made when using

this expression of the phase:

• large angular order ` � 1, but not too large (scattering problems). From a practical point of

view, this means that measurements are performed in the period range 40s < T < 200s with seismic

wavelengths between 200 and 1000km.

• geometrical optics approximation: If λ is the wavelength of the surface wave at period T , and ΛS

the spatial wavelength of heterogeneity: ΛS � λ = V T ⇒ ΛS
>∼2000km. Epicentral distance ∆ must

be larger than seismic wavelength.

• slight anisotropy and heterogeneity: δV
V � 1. According to Smith and Dahlen (1973) for the plane

case, the local phase velocity can be decomposed as a Fourier series of the azimuth Ψ (equation 6):

Each azimuthal term αi(T, θ, φ) of equation (6) can be related to the set of parameters pi(r, θ, φ)

(density + 13 elastic parameters), according to the expressions derived in Appendix.

∆
Vobs(T )

− ∆
V0(T )

= −
∑2

j=0

∑14
i=1

∫ R

E

ds

V0

∫ a

0

[(
pi
V

∂V

∂pi

)
j

δpi(r, θ, φ)
pi

cos(2jΨ)

+
(
pi
V

∂V

∂pi

)
j

δpi(r, θ, φ)
pi

sin(2jΨ)

]
dz

∆h
(13)

Equation (13) defines the forward problem in the framework of first order perturbation theory, relating

the data and the parameter spaces. This approach is usually named PAVA (Path average approxi-

mation). Many terms in equation (13) are equal to zero since all parameters are not present in each

azimuthal term. A last important ingredient in the inverse problem formulation is the ”structure” of

the data space. It is expressed through its covariance function (continuous case) or covariance matrix

(discrete case) of data Cd. When data di are independent, Cd is diagonal and its elements are the

square of the errors on data σdi
.

-Finite-frequency effects

As mentioned previously, a strong hypothesis is that in the framework of geometrical optics approx-

imation, only large scale heterogeneities can be retrieved. But interesting geological objects such as

slabs, plumes are smaller scale. To go beyond the ray theory, it is necessary to take account of the
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finite-frequency effect when scale length has the same order of magnitude as the seismic wavelength.

It is possible to use the scattering theory based on the Born or Rytov approximations (see for ex-

ample Woodhouse and Girnius (1982) for normal mode approach, Snieder (1988) for surfaces waves,

Yomogida (1992), Dahlen et al. (2000) for body waves). Equation (13) shows that the sensitivity

kernels are 1D, meaning that only heterogeneities in the vertical plane containing the source and the

receiver are taken into account, whereas, by using the scattering theory, it is possible to calculate 3D

kernels and consequently to take account of off-path heterogeneities. The equations (12) and (13)

must be replaced by an integral over the volume Ω:

∆
Vobs(T )

− ∆
V0(T )

=
14∑
i=1

∫ ∫ ∫
Ω
Ki(T, θ, φ)

δpi(r, θ, φ)
pi

dΩ (14)

where K(T, θ, φ) is the scattering Fréchet sensitivity kernel, which depends on wave type (Rayleigh

or Love) and on the relative location of E and R (see for example Romanowicz, 2002 for a review).

Very different strategies can be followed for calculating this triple integral, by separating the surface

integral and the radial integral. Marqueing

Parameter space: p(r)

It is quite important to thoroughly think of the structure of the parameter space. First of all, it

is necessary to define which parameters are required to explain our dataset, how many physical

parameters can be effectively inverted for, in the framework of the theory that is considered. For

example, if the Earth is assumed to be elastic, laterally heterogeneous but isotropic, only 3 independent

physical parameters, VP , VS and density ρ (or the elastic moduli λ, µ and ρ) can be inverted for,

from surface waves. In a transversely isotropic medium with a vertical symmetry axis (Anderson,

1961; Takeuchi and Saito, 1972), the number of independent physical parameters is now 6 (5 elastic

parameters + density). In the most general case of a weak anisotropy, 14 physical parameters (13

combinations of elastic moduli + density) can actually be inverted for, using surface waves. Therefore,

the number of ”physical” parameters pi depends on the underlying theory which is used for explaining

the dataset.

Once the number of ”physical” independent parameters is defined, we must define how many ”spa-

tial” (or geographical) parameters are required to describe the 3D distributions pi(r, θ, φ). That is

a difficult problem because the number of ”spatial” parameters which can be reliably retrieved from

the dataset, is not necessarily sufficient to provide a correct description of pi(r, θ, φ), i.e. of the real

Earth. The correct description of pi(r, θ, φ) depends on its spectral content: for example, if pi(r, θ, φ)
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is characterized by very large wavelengths, only a small number of spatial parameters is necessary, but

if pi(r, θ, φ) presents very small-scale features, the number of spatial parameters will be very large.

In any case, it is necessary to assess the range of possible variations for pi(r, θ, φ) in order to provide

some bounds on the parameter space. This is done through a covariance function of parameters in

the continuous case (or a covariance matrix for the discrete case) Cpipj (r, r′) at 2 different points r,

r′. These a priori constraints can be provided by other fields in geosciences, geology, mineralogy,

numerical modeling...

Consequently, a tomographic technique must not be restricted to the inversion of parameters p =

{pi(r, θ, φ)} that are searched for, but must include the calculation of the final covariance function (or

matrix) of parameters Cp. That means that the retrieval of parameters is contingent to the resolution

and the errors of the final parameters and is largely dependent on the resolving power of data (Backus

and Gilbert, 1967, 1968, 1970). Finally, the functional g which expresses the theory relating the data

space to the parameter space is also subject to uncertainty. In order to be completely consistent, it is

necessary to define the domain of validity of the theory and to assess the error σT associated with the

theory. Tarantola and Valette (1982) showed that the error σT is simply added to the error on data

σd.

2.2 Inverse problem

So far, we did not make assumption on the functional g relating data and parameters. But in the

framework of first order perturbation theory, the forward problem is usually linearized and the equation

(13) can be simply written in the linear case:

d = Gp

where G is now a matrix (or a linear operator) composed of Fréchet derivatives of d with respect to

p, which has the dimensions nd × np (number of data × number of parameters). This matrix usually

is not square and many different techniques in the past have been used for inverting G. In any case,

the inverse problem will consist in finding an inverse for the functional g, that we will write g̃−1,

notwithstanding the way it is obtained, such that:

p = g̃−1(d)

To solve the inverse problem, different algorithms can be used.The least-squares solution is usually

solved by minimizing a cost function J . Making symmetric the data space and the parameter space,
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Tarantola and Valette (1982) are defining the cost function J as:

J = (d−Gp)tC−1
d (d−Gp) + (p− p0)tC−1

p (p− p0)

The first term corresponds to classical least-squares with no damping, whereas the second term cor-

responds to norm damping, which imposes smoothness upon the parameter space. Different choices

were proposed for this second term. For example Montagner (1986b) is using a Gaussian covariance

function characterized by a correlation length and an a priori error σp on parameters whereas Su et

al. (1984) prefer to minimize the roughness of the model. Other choices consist in taking a constant

value such that δptC−1
p δp = λ2δptδp (Yoshizawa and Kennett, 2004). Or the covariance operator can

be replaced by a Laplacian operator (see for example Zhou et al., 2006):

δptC−1
p δp = ε

(∫ ∫ ∫
|∇2(

δp

p
)|2dΩ

)1/2

A discussion about damping can be found in Trampert and Snieder (1996) who prefer Laplacian over

model damping to reduce the spectral leakage.

As an example, by using the expression of J , a quite general and widely used algorithm has been

derived by Tarantola and Valette (1982):

p− p0 = (GtC−1
d G+ C−1

p0 )−1GtC−1
d (d− g(p) +G(p− p0))

= Cp0G
t(Cd +GCp0G

t)−1(d− g(p) +G(p− p0)) (15)

where Cd is the covariance matrix of data, Cp0 the covariance function of parameters p, and G is

the Frechet derivative of the operator g at point p(r). This algorithm can be made more explicit by

writing it in its integral form:

p(r) = p0(r) +
∑
i

∑
j

∫
V
dr′Cp0(r, r′)Gi(r′)(S−1)ijFj (16)

with Sij = Cdij
+
∫
V dr1dr2Gi(r1)Cp0(r1, r2)Gj(r2), Fj = dj − gj(p) +

∫
V dr”Gj(r”)(p(r”)−p0(r”))

This algorithm can be iterated and is suited for solving slightly non-linear problems. Different strate-

gies can be followed to invert for the 3D-models p(r), because the size of the inverse problem is

usually enormous in practical applications and a compromise must be found between resolution and

accuracy (and also computing time). For the example of mantle tomography, a minimum parameter

space will be composed of 13 (+density) physical parameters multiplied by 30 layers (if the mantle is

divided into 30 independent layers. If geographical distributions of parameters are searched for up to
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degree 40 (lateral resolution around 1000km), that implies a number of about 700, 000 independent

parameters. Such a problem is still very hard to handle from a computational point of view. A simple

approach for solving this problem consists in dividing the inversion procedure into 2 steps. The first

step consists in regionalizing phase (or group) velocity data in order to retrieve the different azimuthal

terms, and the second step is the inversion at depth. It was implemented by Montagner (1986a,b) and

a very similar technique is presented by Barmin et al. (2001). In case of a large dataset, Montagner

and Tanimoto (1990) showed how to handle the inverse problem by making a series expansion of the

inverse of matrix S. It was recently optimized from a computational point of view by Debayle and

Sambridge (2004) and Beucler and Montagner (2005). One advantage of this technique is that it can

be applied indifferently to regional studies or global studies. In case of imperfect spatial coverage

of the area under investigation, it does not display ringing phenomena commonly observed when a

spherical harmonics expansion is used (Tanimoto, 1986).

From a practical point of view, the choice of the model parameterization is also very important and

different possibilities can be considered:

• Discrete basis of functions:

A simple choice consists in dividing the earth into 3D blocks with a surface block size different from

the radial one. The size of block depends on the lateral resolution expected from the path coverage.

A variant of this parameterization is the use of a set of spherical triangular grid points (see for

example Zhou et al., 2006). The block decomposition is valid as well for global investigations as

for regional studies. Usually, the Earth surface parameterization is different for the radial one. For

global study, the natural basis is composed of the spherical harmonics for the horizontal variations

pi(r, θ, φ) =
∑`max

`=0

∑`
m=−` a

m
l (r)Y m

` (θ, φ). Other choices are possible, such as spherical splines (Wang

and Dahlen, 1995). When data coverage is very uneven, other strategies are proposed using irregular

cells or adaptative meshes (see for example Zhang and Thurber (2005)).

• Continuous function p(r). In that case, the function is directly inverted for. Since the number of

parameters is then infinite, it is necessary to regularize the solution by defining a covariance func-

tion of parameters Cp0(r, r′). For the horizontal variations, a Von Mises distribution (Fisher, 1953;

Montagner, 1986b) can be used for initial parameters p0(r):

Cp0(r, r′) = σp(r)σp(r′) exp
cos ∆rr′ − 1

L2
cor

≈ σp(r)σp(r′) exp
−∆2

rr′

2L2
cor

where Lcor is the correlation length which will define the smoothness of the final model. This kind

of distribution is well suited for studies on a sphere and is asymptotically equivalent to a Gaussian

distribution when Lcor � a (a radius of the Earth). When different azimuthal terms distributions are
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searched for, it is possible to define cross-correlated covariance functions of parameters Cpipj (r, r′),

but since the different terms of the Fourier expansion in azimuth correspond to orthogonal functions,

the cross-correlated terms off the diagonal can be taken equal to zero.

It is interesting to note that, in equation (16), the Frechet derivativesG along the path are multiplied by

the Gaussian covariance operator Cp0 . It means that the technique, which can be named ”Gaussian”

tomography, is equivalent to use ”fat” rays: when the correlation length is wider than the Fresnel zone,

ray theory applies, and consequently, the finite-frequency effects can be neglected. As discussed by

Ritzwoller et al. (2002) and Sieminski et al. (2004), there might be some slight differences in amplitude

between Gaussian tomography and Diffraction tomography (taking account of finite-frequency effects),

but not in the location of heterogeneities provided that the spatial path coverage is sufficiently dense.

The radial parameterization must be related to the resolving capability of the data at depth, according

to the frequency range under consideration. For the radial variations, polynomial expansions can be

used (see for example Dziewonski and Woodhouse, (1987) for Tchebyshev polynomials, or Boschi and

Ekström (2002) for radial cubic splines). Since the number of physical parameters is very large for the

inversion at depth, physical parameters are usually correlated. The different terms of the covariance

function Cp between parameters p1 and p2 at radii ri and rj can be defined as follows:

Cp1,p2(ri, rj) = σp1(ri)σp2(rj)ζp1,p2 exp−(ri − rj)2

2LriLrj
Where ζp1,p2 is the correlation between physical parameters p1 and p2 inferred for instance from

different petrological models (Montagner and Anderson, 1989a) such as pyrolite (Ringwood, 1975) and

piclogite (Anderson and Bass, 1984; and Bass and Anderson, 1984). Lri , Lrj are the radial correlation

lengths which are used to smooth the inverse model.

The a posteriori covariance function is given by:

Cp = Cp0 − Cp0GT (Cd +GCp0G
T )−1GCp0 = (GTC−1

d G+ C−1
p0 )−1 (17)

The resolution R of parameters can be calculated as well. It corresponds to the impulsive response of

the system: p = g̃−1d = g̃−1g p′ = Rp′. If the inverse problem is perfectly solved, R is the identity

function or matrix. However, the following expression of resolution is only valid in the linear case

(Montagner and Jobert, 1981):

R = Cp0G
T (Cd +GCp0G

T )−1G = (GTCdG+ Cp0)−1GTC−1
d G (18)

It is interesting to note, that the local resolution of parameters is imposed by both the correlation

length and the path coverage, unlike the Backus-Gilbert (1967, 1968) approach, which primarily de-
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pends on the path coverage. The effect of a damping factor in the algorithm to smooth the solution,

is equivalent to the introduction of a simple covariance function on parameters weighted by the errors

on data (Ho-Liu et al., 1989). When the correlation length is chosen very small, the algorithms of

Backus-Gilbert (1968, 1970) and Tarantola and Valette (1982) are equivalent.

By considering the a posteriori covariance function and the resolution, it is possible to assess the

reliability of the hypotheses made about the independence of parameters. For example Tanimoto and

Anderson (1985) and Montagner and Jobert (1988) showed that there is a trade-off between azimuthal

terms and constant term in case of a poor azimuthal coverage. For the inversion at depth Nataf et

al. (1986) also display the trade-off between physical parameters VPH , VSV , ξ, φ and η when only

Rayleigh and Love wave 0−Ψ-terms are used in the inversion process.

Though 13 elastic parameters (+ density) are necessary to explain surface wave data (Rayleigh and

Love waves), only 4 parameters are well resolved for small anisotropy (Montagner and Jobert, 1988):

the azimuthally averaged S-wave velocity VS , the radial anisotropy expressed through the ξ parameter

(ξ = (VSH/VSV )2) where VSH (resp. VSV ) is the velocity of S-wave propagating horizontally with

horizontal transverse polarization (resp. with vertical polarization), and the G (Gc, Gs) parameters

expressing the horizontal azimuthal variation of VSV . ξ was introduced in the reference Earth model

PREM (Dziewonski and Anderson, 1981) down to 220km in order to explain a large dataset of free

oscillation eigenfrequencies and body wave travel times. The other elastic parameters can be derived,

by using constraints from petrology in order to reduce the parameter space (Montagner & Anderson,

1989a). This approach was followed by Montagner & Anderson (1989b) to derive an average reference

earth model, and by Montagner & Tanimoto (1991) for the first global 3-D anisotropic model of the

upper mantle.

2.3 Isotropic and anisotropic images of the upper mantle

The complete anisotropic tomographic procedure has been implemented for making different regional

and global studies. Many global isotropic tomographic models of the upper mantle were published

since Wooodhouse and Dziewonski (1984) and the recent results have been reviewed by Romanowicz

(2003). Many models inverting only for radial anisotropy but neglecting azimuthal anisotropy, have

also been published (Nataf et al., 1984, 1986; Ekström and Dziewonski, 1998; Shapiro and Ritzwoller,

2002, Gung et al., 2003; Panning and Romanowicz, 2004; Zhou et al., 2006) The complete anisotropic

tomographic technique (including azimuthal anisotropy) has been applied for investigating the upper

mantle structure either at a regional scale of the Indian Ocean (Montagner, 1986a; Montagner and
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Jobert, 1988; Debayle and Lévêque, 1997), of the Atlantic Ocean (Mocquet and Romanowicz, 1989;

Silveira et al., 1998; Silveira and Stutzmann, 2002), of Africa (Hadiouche et al., 1989; Debayle et al.,

2001; Sebai et al., 2005; Sicilia et al., 2005), of Pacific Ocean (Nishimura & Forsyth, 1989; Bussy

et al., 1993; Montagner, 2002; Ritzwoller et al., 2004), of Antarctica (Roult et al., 1994 ), Australia

(Debayle and Kennett, 2000; Simons et al., 2002) and Central Asia (Griot et al., 1998a,b; Villaseñor

et al., 2001) or at a global scale (Montagner & Tanimoto, 1990, 1991; Montagner, 2002; Debayle et

al., 2004). The reader is also referred to a quantitative comparison of tomographic and geodynamic

models by Becker and Boschi (2002).

An important issue, when constructing tomographic models is the correction for crustal structure,

where sedimentary thickness, Moho depth variations are so strong that they affect dispersion of surface

waves at least up to 100s : it was shown (Montagner and Jobert, 1988) that standard perturbation

theory is inadequate to correct for crustal correction and more rigorous approaches were proposed

(Li and Romanowicz, 1996); Boschi and Ekström, 2002; Zhou et al., 2005) using the updated crustal

models 3SMAC (Nataf and Ricard, 1996; Ricard et al., 1996) or CRUST2.0 (Mooney et al., 1998;

Laske et al., 2001).

As an example of the results obtained after the first step of the tomographic procedure, Figure 4 shows

different maps of 2−Ψ azimuthal anisotropy for Rayleigh waves at 100s period for the first 3 modes,

n=0,1,2 superimposed on the isotropic part (0−Ψ term) of phase velocity (Beucler and Montagner,

2006). From petrological and mineralogical considerations, Montagner and Nataf (1988) and Montag-

ner and Anderson (1989a,b) showed that the predominant terms of phase velocity azimuthal expansion

are the 0-Ψ and 2-Ψ for Rayleigh waves, and 0-Ψ and 4-Ψ for Love waves. However, Trampert and

Woodhouse (2003) carefully addressed the requirement of azimuthal anisotropy, and demonstrated that

Rayleigh wave data need both 2Ψ and 4Ψ terms, which is also confirmed by Beucler and Montagner

(2006). It was shown that for the same variance reduction, a global parameterization of anisotropy

including azimuthal anisotropy requires fewer parameters than an isotropic parameterization. This

apparent paradox can be explained by the fact that the increase of physical parameters is largely com-

pensated by the smaller number of geographical parameters, i.e. larger scale heterogeneities. Other

tests have questioned whether phase data are sensitive enough to detect azimuthal anisotropy (Larson

et al., 1998; Laske et al., 1998) and the use of additional polarization data has been proposed.

Most tomographic models agree that down to about 250-300km, the deep structure is closely related

to plate tectonics and continental distribution. Figure 5 presents two horizontal cross-sections from

the most recent model of Debayle et al. (2005), which illustrates and confirms the robust features of
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the upper mantle models published so far since Montagner and Tanimoto (1991). In the upper mantle

depth range around 100km, all plate boundaries are slow: ridges and back-arc areas are slow, shields

are fast and seismic velocity in oceanic areas is increasing with the age of the seafloor. Except at few

places, it is found that radial anisotropy expressed through the ξ parameter (ξ = V 2
SH−V

2
SV

V 2
SV

) is positive,

as large as 10% in some oceanic areas and decreases with depth.

The amplitude of SV-wave azimuthal anisotropy (G parameter) presents an average value of about

2% below oceanic areas (Figure 5b). Montagner (1994, 2002) noted a good correlation between

seismic azimuthal anisotropy and plate velocity directions (primarily for fast moving plates) given by

Minster and Jordan (1978) or DeMets et al. (1990). However, the azimuth of G-parameter can vary

significantly as a function of depth. For instance, at shallow depths (down to 60km), the maximum

velocity can be parallel to mountain belts or plate boundaries (Vinnik et al., 1991; Silver, 1996;

Babuska et al., 1998), but orthogonal to them at large depth. This means that, at a given place, the

orientation of fast axis is a function of depth, which explains why the interpretation of SKS splitting

with a simple model is often difficult.

As depth increases, the amplitude of heterogeneities rapidly decreases, some trends tend to vanish,

and some distinctive features come up: most fast ridges are still slow but slow ridges are hardly visible

and back-arc regions are no longer systematically slow below 200km. Large portions of fast ridges are

offset with respect to their surface signatures. Below 300km of depth (not shown here), high velocity

body below the western and the eastern Pacific rim is the most striking feature, which can be related

to subducting slabs.

A visual and quantitative comparison of existing models can be found in the REM (Reference Earth

Model) web site at the following address: http://mahi.ucsd.edu/Gabi/rem.html

3 Geodynamic applications

The most popular application of large-scale tomographic models is the understanding of mantle con-

vection. Seismic velocity anomalies can be converted, under some assumptions, into temperature

anomalies, density anomalies but also into chemical or mineralogical heterogeneities. The application

of seismic anisotropy to geodynamics in the upper mantle is straightforward, if we assume that, due

to the lattice preferred orientation (LPO) of anisotropic crystals such as olivine (Christensen and

Lundquist, 1982; Nicolas et al., 1973), the fast-polarization axis of mineralogical assemblages is in the

flow plane parallel to the direction of flow. Figure 6 shows what is expected for the observable pa-
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rameters VS , ξ, G, ψG in the case of a simple convective cell with LPO. Radial anisotropy ξ expresses

the vertical (ξ < 1) or horizontal character (ξ > 1) of convective flow, and the azimuthal anisotropy

G, can be related to the horizontal flow direction. Conversely, the three maps of VS , ξ, G, can be

interpreted in terms of convective flow. These 3 pieces of information are necessary to correctly inter-

pret the data. For example, upwellings or downwellings are both characterized by a weak or negative

ξ parameter, but a correlative positive or negative δVS discriminates between these possibilities. By

simultaneously inverting at depth for the different azimuthal terms of Rayleigh and Love waves, it is

therefore possible to separate the lateral variations in temperature from those induced by the orien-

tation of minerals. Such an interpretation might however be erroneous in water-rich mantle regions

where LPO of minerals such as olivine is not simply related to the strain field (e.g. Jung and Karato,

2001). We will only present some examples of interesting applications of anisotropy in large scale geo-

dynamics and tectonics. Seismic anisotropy in the mantle primarily reflects the strain field prevailing

in the past (frozen-in anisotropy) for shallow layers or present convective processes in deeper layers.

Therefore, it makes it possible to map convection in the mantle. It must be noted that, when only the

radial anisotropy is retrieved, its interpretation is non unique. A fine layering of the mantle can also

generate such a kind of anisotropy, and neglecting the azimuthal anisotropy can bias the amplitude of

radial anisotropy and its interpretation.

The uppermost mantle down to 410km is the depth range where the existence of seismic anisotropy is

now widely recognized and well documented. Azimuthal variations have been found for body waves and

surface waves in different areas of the world. During the last years, the shear wave splitting, primarily

for SKS waves was extensively used to study continental deformation, but very few studies using body

waves are devoted to oceanic areas. Conversely, global anisotropic upper mantle models have been

primarily derived during the last 10 years from surface waves, which are sensitive to structure below

oceanic areas in the absence of ocean bottom stations and consequently of dense body wave data. The

intercomparison of anisotropic body wave and surface wave data is still in its infancy. However, as

shown by Montagner et al. (2000), Vinnik et al. (2002), Simons et al. (2003) such a comparison is

providing encouraging results.

3.1 Oceanic plates

Oceans are the areas where plate tectonics applies almost perfectly and this is particularly the case

in the largest one, the Pacific plate. Figure 7 presents 3 vertical cross-sections at two different

latitudes, displaying VSV velocity anomalies (figure 7a) and the 2 kinds of anisotropy, which can be
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retrieved by simultaneous inversion of Rayleigh and Love waves constant 0−Ψ and azimuthal terms

of equation (1) from the model of Montagner (2002). In figure 7b, the equivalent radial anisotropy

of the medium, for S-wave expressed through the ξ parameter, is displayed. The maps of figure 7c

are the distributions of the G-parameter related to the azimuthal variation of SV-wave velocity. The

maximum amplitude of G is around 5% and rapidly decreases as depth increases. The distribution of

velocity and anisotropy are completely different for these different cross-sections. The thickening of

lithosphere with the age of the seafloor is well observed on VSV velocity maps, but lithosphere is much

thicker in the northern cross-section. When compared with the cooling half-space model, bathymetry,

heat flux and lithospheric thickness flatten with age (see Ritzwoller et al., 2004 for recent results). This

flattening is explained by basal reheating, especially in the Central Pacific and the birth of small-scale

convection below the lithosphere (T and Jaupart, 1994; Solomatov and Moresi, 2000).

Radial cross-sections (Figure 7b) show that the δξ = ξ − ξPREM parameter is usually negative and

small, where flow is primarily radial (mid-ocean ridges and subduction zones). For the east Pacific

Rise, Gu et al. (2005) found that a negative radial anisotropy is observed at least down to 300km.

Between plate boundaries, oceans display very large areas with a large positive radial anisotropy such

as in the Pacific Ocean (Ekström & Dziewonski, 1998), characteristic of an overall horizontal flow field.

This very large anisotropy in the asthenosphere might be the indication of a strong deformation field

at the base of the lithosphere (Gung et al., 2003), corresponding to the upper boundary layer of the

convecting mantle (Anderson and Regan, 1983; Montagner, 1998).

Since convective flow below oceans is dominated by large scale plate motions, the long wavelength

anisotropy found in oceanic lithospheric plates and in the underlying asthenosphere, should be similar

to the high-resolution anisotropy measured from body waves. Incidentally, one of the first evidences

of azimuthal anisotropy was found in the Pacific Ocean by Hess (1964) for Pn-waves. So far, there

are very few measurements of anisotropy by SKS splitting in the oceans. Due to the lack of seismic

stations on the sea floor (with the exception of H2O halfway between Hawaii and California), the only

measurements available for SKS were performed in stations located on ocean islands (Ansel & Nataf,

1989; Kuo & Forsyth, 1992; Russo & Okal, 1999; Wolfe & Silver, 1998), which are by nature anomalous

objects, such as volcanic hotspots, where the strain field is perturbed by the upwelling material and

not necessarily representative of the main mantle flow field. SKS splitting was measured during the

temporary MELT experiment on the East-Pacific Rise (Wolfe & Solomon, 1998) but the orientation

of the splitting is in disagreement with the petrological predictions of Blackman et al. (1996). Walker

et al. (2001) presented a first measurement of SKS splitting at H2O, but it is in disagreement with
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independent SKS splitting measurements at the same station by Vinnik et al. (2002) and with surface

wave anisotropy (Montagner, 2002).

The large scale azimuthal anisotropy within and below lithosphere in the depth range 100-300km

is closely related to plate motions (Montagner, 1994; Ekström, 2000) and modeled in this framework

(Tommasi et al., 1996). Fast moving oceanic plates are zones where the comparison between directions

of plate velocities (Minster & Jordan, 1978) or NUVEL-1 (DeMets et al., 1990) and directions of G−

parameter is the most successful (Figure 8). Conversely, such a comparison is more difficult and

controversial below plates bearing a large proportion of continents, such as the European-Asian plate,

characterized by a very small absolute motion in the hotspot reference frame and probably a large

influence of inherited anisotropy.

The map with the G-parameter at 100km (Figure 5) as well as the cross-sections of figure 7c show

that the azimuthal anisotropy is very large along spreading ridges with a large asymmetry for the

East Pacific rise. The direction of anisotropy is in very good agreement with plate motion, which

is also found in all other available models (Ekström, 2000; Smith et al., 2004; Debayle et al., 2005).

The anisotropy is also large in the middle of the Pacific plate, but a line of very small azimuthal

anisotropy almost parallel to the EPR is observed there (see also Figure 2 for synthetic SKS). This

linear area of small anisotropy was named Low Anisotropy Channel (LAC) by Montagner (2002).

When calculating the variation of the amplitude of azimuthal anisotropy as a function of depth, a

minimum comes up between 40 and 60Ma age of the seafloor (Figure 9a). The LAC is presumably

related either to cracking within the Pacific plate and/or to secondary convection within and below

the rigid lithosphere, predicted by numerical and analog experiments and also translated in the VS

velocity structure (Ritzwoller et al., 2004; Figure 9b). These new features provide strong constraints

on the decoupling between the plate and asthenosphere. The existence and location of these LACs

might be related to the current active volcanoes and hotspots (possibly plumes) in Central Pacific.

LACs, which are dividing the Pacific Plate into smaller units, might indicate a future reorganization of

plates with ridge migrations in the Pacific Ocean. They call for more thorough numerical modelling.

3.2 Continents

Differences in the thickness of high-velocity layer underlying continents as imaged by seismic tomog-

raphy have fuelled a long debate on the origin of continental roots (Jordan, 1975, 1978). Some global

tomographic models provide a continental thickness of about 200-250km in agreement with heat-flow

analysis or electrical conductivity, but others suggest thicker zones up to 400km.
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Seismic anisotropy can provide fundamental information on the structure of continents, their root and

the geodynamic processes involved in mountain building and collision between continents (Vinnik et

al., 1992; Silver, 1996) such as in Central Asia (Griot et al., 1998a,b). Radial anisotropy ξ is usually

very heterogeneous below continents in the first 150-200km of depth with positive or negative areas

according to geology. But it seems to display a systematic tendency of being positive at larger depth

(down to 300km), whereas it is very large in the oceanic lithosphere in the depth range 50-200km

and decreases rapidly at larger depths (Montagner, 1994). Conversely, radial anisotropy displays a

maximum (though smaller than in oceanic lithosphere) below very old continents (such as Siberian and

Canadian Shield) in the depth range 200-400km (Montagner and Tanimoto, 1991). Seismic anisotropy

below continents, sometimes confined to the upper 220km (Gaherty & Jordan, 1995) can still be

significant below. A more quantitative comparison of radial anisotropy between different continental

provinces is presented in Babuska et al. (1998), and demonstrates systematic differences according to

the tectonic context. The existence of positive large scale radial anisotropy below continents at depth

might be a good indicator of the continental root which was largely debated since the presentation

of the model of tectosphere by Jordan (1975, 1978, 1981). If this maximum of anisotropy is assumed

to be related to an intense strain field in this depth range, it might be characteristic of the boundary

between continental lithosphere and ”normal” upper mantle material. Gung et al. (2003) showed

that it is possible to reconcile different isotropic tomographic models by taking into account seismic

anisotropy. They find that significant radial anisotropy (with VSH > VSV ) under most cratons in the

depth range 250-400km, similar to that found at shallower depths (80-250km) below oceanic basins.

Such a result is also in agreement for the Australian continent (Debayle and Kennett, 2000; Simons et

al., 2002). So, all results seem to show that the root of continents as defined by radial anisotropy is

located between 200 and 300km. However, this result is not correlated with a maximum in azimuthal

anisotropy in this depth range (Debayle and Kennett, 2005): the fast-moving Australian plate seems

to be the only continental region with a sufficiently large deformation at its base to be transformed

into azimuthal anisotropy. They propose that, for continents other than Australia, weak influence

of basal drag on the lithosphere may explain why azimuthal anisotropy is observed only in a layer

located in the uppermost 100 km of the mantle. This layer shows a complex organisation of azimuthal

anisotropy suggesting a frozen-in origin of deformation, compatible with SKS splitting.

The difference in radial and azimuthal anisotropies between oceans and continents might reflect a

difference of coupling between lithosphere and asthenosphere, through the basal drag. The coupling

might be weak below most continental roots, in contrast with the Pacific plate, where the coupling
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(reflected by plate direction) is the first order effect in the uppermost 200km for young ages, before

thermal instabilities take place at the base of the lithosphere, as evidenced by the existence of low

anisotropy channels. These results on the difference between oceanic and continental anisotropies are

illustrated in Figure 10.

3.3 Velocity and Anisotropy in the transition zone

The transition zone plays a key role in mantle dynamics, particularly the 660km-discontinuity which

might inhibit the passage of matter between the upper and the lower mantle. Its seismic investigation

is made difficult on the global scale by the poor sensitivity of fundamental surface waves in this depth

range and by the fact that teleseismic body waves recorded at continental stations from earthquakes

primarily occuring along plate boudaries have their turning point below the transition zone. For

body waves, many different techniques using SS-precursors (Shearer, 1991) or P-to-S converted waves

(Chevrot et al., 1999) were used at global scale to investigate the thickness of the transition zone. In

spite of some intial controversies, a recent model by Lawrence and Shearer (2006) provides a coherent

large-scale image of the transition zone thickness.

Whatever the type of data (normal mode, higher modes of surface waves, body waves), an important

feature of the transition zone is that, contrarily to the rest of the upper mantle, the upper transition

zone is characterized by a large degree 2 pattern (Masters et al., 1982), and to a less extent, a strong

degree 6. The degree 2 pattern (as well as degree 6) can be explained by the predominance of a

simple large-scale flow pattern characterized by two upwellings in central Pacific Ocean and Eastern

Africa and two downwellings in the Western and Eastern Pacific Ocean (Montagner & Romanowicz,

1993), proposed initially in the lower mantle (Busse, 1983). This scheme was corroborated by the

existence, in the upper transition zone, of a slight but significant degree 4 radial anisotropy displayed

by Montagner & Tanimoto (1991) and Roult et al. (1990) in agreement with the prediction of this

model. Therefore, the observations of the geographical distributions of degrees 2, 4, 6 in the transition

zone are coherent and spatially dependent. Montagner (1994) compared these different degrees to the

corresponding degrees of the hotspot and slab distribution. In this simple framework, the distribution

of plumes (degree 2+6) are merely a consequence of the large scale simple flow in the transition zone.

The degree 6 of velocity in the transition zone is well correlated with the distribution of hotspots and

might indicate that many mantle plumes might originate in the transition zone. Ritsema et al. (2004)

observe lower-than-average shear velocity at eight hotspots in this depth range (Figure 11). These

results suggest that there are different families of plumes, some of them originating in the transition
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zone.

As for anisotropy in the transition zone, Montagner & Kennett (1996), by using eigenfrequency data,

display some evidence of radial anisotropy in the upper (410-660km) and lower (660-900km) transition

zones. Gung and Romanowicz (2004) also display a slight maximum of the degree 0 ξ in the transition

zone. The existence of anisotropy close to the 660km-discontinuity was also found by Vinnik &

Montagner (1996) below Germany and Vinnik et al. (1998) in central Africa. By studying P-to-

S converted waves at the GRF network and at GEOSCOPE station BNG in central Africa, they

observed that part of the initial P-wave is converted into SH-wave. This signal can be observed on

the transverse component of seismograms. The amplitude of this SH-wave cannot be explained by a

dipping 660km-discontinuity and it constitutes a good evidence for the existence of anisotropy just

above this discontinuity. However, there is some evidence of lateral variation of anisotropy in the

transition zone as found by the investigation of several subduction zones (Fischer & Yang, 1994;

Fischer & Wiens, 1996). Fouch & Fischer (1996) present a synthesis of these different studies and

show that some subduction zones such as Sakhalin Islands require deep anisotropy in the transition

zone, whereas others such as Tonga do not need any anisotropy. They conclude that their data might

be reconciled by considering the upper transition zone (410-520km) intermittently anisotropic, and

the rest of the transition zone might be isotropic.

Anisotropy in the transition zone was also advocated by 2 independent studies, using different datasets.

The observations of Wookey et al. (2002), though controversial, present evidence of very large S-wave

splitting (up to 7.s) in the vicinity of the 660km discontinuity between Tonga-Kermadec subduction

zone and Australia. On a global scale, Trampert and van Heijst (2002) show a long-wavelength

azimuthal anisotropic structure in the transition zone. The rms amplitude of lateral variations of G is

about 1%. Beghein and Trampert (2003) using probability density functions and separating ξ, φ and η

anisotropies suggest a chemical component to explain these different parameters. The interpretation

of these new tentative results is not obvious and new data are necessary to close the debate on the

nature of velocity and anisotropy heterogeneities in the transition zone. The transition zone might

be a mid-mantle boundary layer, and a detailed and reliable tomographic model of S-wave velocity

and anisotropy in the transition zone will provide fundamental insights into the dynamic of the whole

mantle.
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4 Numerical Modeling and Perspectives

In the previous sections, we have highlighted the presence of lateral heterogeneities in seismic velocity

and anisotropy in different parts of the earth’s upper mantle. However, anisotropy is not present in all

depth ranges nor at all scales. There is some consensus for the presence of radial anisotropy in many

parts of the upper mantle in order to simultaneously explain Love-wave and Rayleigh-wave dispersion

and even in the lower mantle (Panning et al., 2004). The existence of azimuthal anisotropy is more

controversial, though, from petrological reasons, it turns out that radial anisotropy and azimuthal

anisotropy are intimately related and should be searched for simultaneosuly. Additional data such as

polarization data might help to provide additional constraints on both kinds of anisotropy (Yu and

Park, 1993; Pettersen and Maupin, 2002). But it requires the development of improved theoretical

and numerical methods in order to work on the amplitude of seismograms.

Thanks to the access to very powerful computers, we are at the beginning stage of a new era for

seismology. The twentieth century was dominated by the use of ray theory and later on, of normal

mode theory. Since it is now feasible to numerically compute synthetic seismograms in complex 3D

structures in global spherical geometry (Komatitsch and Vilotte, 1998; Komatitsch and Tromp, 1999;

Capdeville et al., 2003), it is possible to model the complex interaction between seismic waves and 3D

heterogeneity, particularly in anisotropic, anelastic media. Some new and sophisticated tomographic

methods are presently developed (Montelli et al., 2004; Capdeville et al., 2005; Tromp et al., 2005;

Zhou et al., 2006), which should provide access to the complexity of the Earth mantle by the mapping

of short-scale heterogeneities such as mantle plumes, in anisotropic and anelastic media.

A second important challenge is the complete understanding of the origin of anisotropy from the

mineral scale up to global scale in the different layers of the earth. In the upper mantle, seismic

anisotropy is due to LPO of anisotropic minerals such as olivine at large scales, requiring several

strong conditions, starting with the presence of anisotropic crystals up to the existence of an efficient

large scale present or past strain field. In order to fill the gap between grain scale modeling (McKenzie,

1979; Ribe, 1989; Kaminski and Ribe, 2001) and large scale anisotropy measurements in a convective

system (Tommasi et al., 2000), there is now a real need to make more quantitative comparisons

between seismic anisotropy and numerical modeling. Gaboret et al. (2003) and Becker et al. (2003)

calculated the convective circulation in the mantle by converting perturbations of S-wave velocity

into density perturbations. Figure 12 shows 2 cross-sections through the Pacific hemisphere and

the associated flow lines (Gaboret et al., 2003) derived from the tomographic model of Ekström and

Dziewonski (1998). This kind of modeling makes it possible to calculate the strain tensor and to test
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different hypotheses for the prevailing mechanisms of alignment, by comparison with seismic data.

The upper mantle is the best known of the deep layers of the earth, where there is now good agree-

ment between many isotropic global tomographic models. But the account of seismic anisotropy is

mandatory to avoid biased isotropic heterogeneities. The main application of anisotropy is the map-

ping of mantle convection and of its boundary layers (Karato, 1998; Montagner, 1998). The finding of

anisotropy in the transition zone (if confirmed) will provide strong constraints on the flow circulation

and the exchange of matter between the upper and the lower mantle. Pursuing the first pionneering ef-

forts, the systematic modeling of the complete seismic waveform in 3D heterogeneous, anisotropic and

anelastic media associated with new techniques of numerical modeling of seismograms will probably

enhance our vision of the whole mantle.

In parallel to these theoretical and numerical challenges, there is a crucial need for instrumental

developments since there are still many areas at the surface of Earth devoid of broadband seismic

stations. These regions are primarily located in southern hemisphere and more particularly in oceanic

areas where no islands are present. Therefore, an international effort is ongoing, coordinated through

I.O.N. (International Ocean Network) in order to promote the installation of geophysical ocean bottom

observatories in order to fill the enormous gaps in the station coverage (for a description of I.O.N.,

http://seismo.berkeley.edu/seismo/ion).
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Appendix: Effect of Anisotropy on surface waves in the plane-layered
medium
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Figure 1: Definition of the Cartesian coordinate
system (x, y, z) used in the calculations. Ψ is
the azimuth of the wavevector with respect to
North.

The half-space is assumed to be homogeneous and may be described by its density ρ(z) and its
4th-order elastic tensor Γ(z) with 21 independent elastic coefficients. All these parameters are so far
supposed independent of x and y coordinates (z is the vertical component). This condition will be
released in the next section. The unperturbed medium is assumed isotropic with an elastic tensor
Γ0(z). In that medium, the two cases of Love and Rayleigh wave dispersion can be successively
considered.

The unperturbed Love wave displacement is of the form:

u(r, t) =

 −W (z) sin Ψ
W (z) cos Ψ

0

 exp(i[k(x cos Ψ + y sin Ψ)− ωt]) (19)

where W (z) is the scalar depth eigenfunction for Love waves, k is the horizontal wave number, and Ψ
is the azimuth of the wave number k measured clockwise from the North.

The unperturbed Rayleigh wave displacement is of the form:

u(r, t) =

 V (z) cos Ψ
V (z) sin Ψ
iU(z)

 exp(i[k(x cos Ψ + y sin Ψ)− ωt]) (20)

where V (z) and U(z) are the scalar depth eigenfunctions for Rayleigh waves. The associated strain
tensor ε(r, t) is defined by:

εij(r, t) = 1/2(ui,j + uj,i) (21)

where , j denotes the differentiation with respect to the j-th coordinate. The medium is perturbed
from Γ0(z) to Γ0(z) + γ(z), where γ(z) is small compared to Γ0(z) but quite general in the sense that
there is no assumption on the kind of anisotropy. This means that in this approximation, we can still
consider quasi-Love modes and quasi-Rayleigh modes (Crampin, 1984). From Rayleigh’s principle,
the first order perturbation δV (k) in phase velocity dispersion is (Smith and Dahlen, 1973, 1975):

δV (k) =
V

2ω2

∫∞
0 γijklεijε

∗
kl∫∞

0 ρ0uku
∗
kdz

dz (22)

where ui and εij are respectively the displacement and the strain for the unperturbed half-space and
the asterisk denotes complex conjugation. Now because of the symmetry of the tensors γ(z) and ε,
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we use the simplified index notation cij and εi for the elements γijkl and εij , but the number nij of
coefficients γijkl for each cij must be taken into account. The simplified index notation for the elastic
tensor γijkl is defined in a coordinate system (x1, x2, x3) by:

γijkl −→ cpq


if i = j ⇒ p = i
if k = l⇒ q = k
if i 6= j ⇒ p = 9− i− j
if k 6= l⇒ q = 9− k − l

(23)

This kind of transformation enables us to relate the 4th order tensor γ (3x3x3x3) to a matrix c
(6x6). The same simplified index notation can be applied to the components of the strain tensor εij ,
transforming the 2nd order tensor ε (3x3) into a vector with 6 components. However, it is necessary to
be careful, because to a given cpq correspond several γijkl, and γijkl must be replaced by npqcpq, where
npq is the number of γijkl giving the same cpq. Therefore, the equation (22) expressing Rayleigh’s
principle can be rewritten as:

δV (k) =
V

2ω2

∫∞
0

∑
ij nijcijεiε

∗
j∫∞

0 ρ0uku
∗
kdz

dz (24)

We only detail the calculations for Love waves.
• Love waves.
By using previous expressions for u(r, t) (19) and εij(r, t) (21), the various expressions of strain are:

ε1 = −i cos Ψ sin Ψ kW
ε2 = i cos Ψ sin Ψ kW
ε3 = 0
ε4 = 1/2 cos ΨW ′

ε5 = −1/2 sin ΨW ′

ε6 = 1/2(cos2 Ψ− sin2 Ψ) kW

(25)

where W ′ = dW
dr . In table 1, the different terms nijcijεiε∗j are given. We note that when cijεiε

∗
j

is a purely imaginary complex, its contribution to δV (k,Ψ) is null. When all the contributions are
summed, the different terms cosk Ψ sinl Ψ are such that k + l is even, which is not surprising in the
light of the reciprocity principle. Therefore, each term can be developed as a Fourier series in Ψ with
only even terms. Finally it is found:

δVL(k,Ψ) = V
2ω2L0

∫ ∞
0

dz{k2W 2[
1
8

(c11 + c22 − 2c12 + 4c66] +W ′2[
1
2

(c44 + c55)]

+ cos 2ΨW ′2[
1
2

(c44 − c55)]− sin 2ΨW ′2c45

− cos 4Ψ k2W 2[
1
8

(c11 + c22 − 2c12 − 4c66)] (26)

+ sin 4Ψ k2W 2[
1
2

(c26 − c16)]}

In the particular case of a transversely isotropic medium with a vertical symmetry axis (also named
radial anisotropic medium), we have: c11 = c22 = δA, c33 = δC, c12 = δ(A − 2N), c13 = c23 = δF ,
c44 = c55 = δL, c66 = δN and c14 = c24 = c15 = c25 = c16 = c26 = 0. The local azimuthal terms
vanish and the previous equation (26) reduces to:

δVL(k,Ψ) =
1

2VLL0

∫ ∞
0
{W 2δN +

W ′2

k2
δL}dz (27)
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Therefore, the same expressions as in Takeuchi and Saito (1972, p. 268) are found in the case of
radial anisotropy. The 0 − Ψ term of equation (26) corresponds to the averaging over azimuth Ψ,
which provides the equivalent transversely isotropic model with vertical symmetry axis by setting:
δN = 1

8(c11 + c22)− 1
4c12 + 1

2c66

δL = 1
2(c44 + c55)

If we call Cij the elastic coefficients of the total elastic tensor, we can set:

N = ρV 2
SH =

1
8

(C11 + C22)− 1
4
C12 +

1
2
C66

L = ρV 2
SV =

1
2

(C44 + C55)

According to equation (26), the first order perturbation in Love wave phase velocity δVL(k,Ψ) can
then be expressed as:

δVL(k,Ψ) =
1

2V0L(k)
[L1(k) + L2(k) cos 2Ψ + L3(k) sin 2Ψ + L4(k) cos 4Ψ + L5(k) sin 4Ψ (28)

where
L0(k) =

∫∞
0 ρW 2dz

L1(k) = 1
L0

∫∞
0 (W 2δN + W ′2

k2 δL)dz
L2(k) = 1

L0

∫∞
0 −Gc(

W ′2

k2 )dz
L3(k) = 1

L0

∫∞
0 −Gs(

W ′2

k2 )dz
L4(k) = 1

L0

∫∞
0 −Ec.W

2dz

L5(k) = 1
L0

∫∞
0 −Es.W

2dz

• Rayleigh waves.
The same procedure holds for the local Rayleigh wave phase velocity perturbation δVR, starting

from the displacement given previously (Montagner and Nataf, 1986).

δVR(k,Ψ) =
1

2V0R(k)
[R1(k) +R2(k) cos 2Ψ +R3(k) sin 2Ψ +R4(k) cos 4Ψ +R5(k) sin 4Ψ (29)

where

R0(k) =
∫∞

0 ρ(U2 + V 2)dz
R1(k) = 1

R0

∫∞
0 [V 2.δA+ U ′2

k2 .δC + 2U ′V
k .δF + (V

′

k − U)2.δL]dz
R2(k) = 1

R0

∫∞
0 [V 2.Bc + 2U ′V

k .Hc + (V
′

k − U)2.Gc]dz
R3(k) = 1

R0

∫∞
0 [V 2.Bs + 2U ′V

k .Hs + (V
′

k − U)2.Gs]dz
R4(k) = 1

R0

∫∞
0 Ec.V

2dz

R5(k) = 1
R0

∫∞
0 Es.V

2dz

The 13 depth-dependent parameters A,C, F, L,N,Bc, Bs, Hc, Hs, Gc, Gs, Ec, Es are linear combina-
tions of the elastic coefficients Cij and are explicitly given as follows:

Constant term ( 0 Ψ -azimuthal term: independent of azimuth)

A = ρV 2
PH = 3

8(C11 + C22) + 1
4C12 + 1

2C66

C = ρV 2
PV = C33

F = 1
2(C13 + C23)
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L = ρV 2
SV = 1

2(C44 + C55)
N = ρV 2

SH = 1
8(C11 + C22)− 1

4C12 + 1
2C66

2 Ψ -azimuthal term:

cos 2Ψ sin 2Ψ
Bc = 1

2(C11 − C22) Bs = C16 + C26

Gc = 1
2(C55 − C44) Gs = C54

Hc = 1
2(C13 − C23) Hs = C36

4 Ψ -azimuthal term:

cos 4Ψ sin 4Ψ
Ec = 1

8(C11 + C22)− 1
4C12 − 1

2C66 Es = 1
2(C16 − C26)

where indices 1 and 2 refer to horizontal coordinates (1: North; 2: East) and index 3 refers to vertical
coordinate. ρ is the density, VPH , VPV are respectively horizontal and vertical propagating P-wave
velocities, VSH , VSV horizontal and vertical polarized S-wave velocities. We must bear in mind that
A,C,L,N anisotropic parameters can be retrieved from measurements of the P- and S- wave velocities
propagating perpendicular or parallel to the axis of symmetry.

42



Table 1: Calculation of the various cijεiεj for Love waves, with the simplified index notation.
α = cos Ψ; β = sin Ψ

n ij cijεiεj
1 11 c11α

2β2.k2W 2

1 22 c22α
2β2.k2W 2

1 33 0
2 12 −c12α

2β2.k2W 2

2 13 0
2 23 0
2 24 0
4 14 c14(−iα2β).kWW ′

2

4 15 c15(iα2β).kWW ′

2

4 16 c16(−αβ)(α2 − β2).k
2W 2

2

4 24 c24(−iα2β).kWW ′

2

4 25 c25(−iαβ2).kWW ′

2

4 26 c26(αβ)(α2 − β2).k
2W 2

2
4 34 0
4 35 0
4 36 0
4 44 c44α

2.W
′2

4

8 45 c45(−αβ).W
′2

4

8 46 c46(−iα)(α2 − β2).kWW ′

2

4 55 c55β
2.W

′2

4

8 56 c56(iβ)(α2 − β2).kWW ′

2

4 66 c66(α2 − β2).k
2W 2

4

Acknowledgments. I would like to thank Barbara Romanowicz and an anonymous reviewer for
constructive reviews, as well as my colleagues from IPG of Paris

43



Figure 1 : example of real and synthetic seismograms used for retrieving
Rayleigh wave dispersion curve for the fundamental mode and overtones
(Beucler et al., 2003). Behind body waves, the signal is composed of surface
waves. The complex phase before the high amplitude wave packet
corresponding to the fundamental mode of Rayleigh wave (n=0) can be
synthetized by summing the first overtones.



Figure 2 : Map of synthetic SKS splitting derived from the anisotropic surface
wave model of Montagner (2002). The delay time is expressed in seconds.



Figure 3 : Phase velocity of the fundamental mode and the first 6 higher modes
of Rayleigh compared with PREM (right plot) and with results (center) obtained
in previous studies along the same path between Vanuatu and California (SCZ
Geoscope station) (Beucler et al., 2003).



Figure 4 : Rayleigh wave Phase velocity maps at period T=100S for the first 3
modes  (n=0, 1, 2) after Beucler and Montagner (2006)





Figure 5 : 2 cross-sections at 100km (top) and 200km (bottom) depths of the
global tomographic model of Debayle et al. (2005). Directions of azimuthal
anisotropy are superimposed on S-wave velocity heterogeneities. The length of
bars is proportional to its amplitude (<2%)



Figure 6 : The seismic observable parameters VS, ξ, G, ΨG associated with a
simple convecting cell in the upper mantle, assuming lattice-preferred
orientation of anisotropic  minerals such as olivine. A vertical flow is
characterized by a negative ξ radial anisotropy (ratio between VSH and VSV and
a small azimuthal anisotropy (G≈ 0). An  upwelling (resp. downwelling) is
characterized by a large positive (resp. negative) temperature anomaly inducing
δVS  <0 (resp. δVS >0).
A predominant large scale horizontal flow will be translated into  a significant
amplitude of the G azimuthal anisotropy and its orientation will reflect the
direction of flow (with a 180° ambiguity)
(After Montagner, 2002).



Figure 7: Vertical cross-sections of the distribution of VS, ξ−ξref, G in the Pacific
Plate at –20° south  and 20° north between radii 6000km (370kmdepth) and
6350km (20km depth) (after Montagner, 2002). The color scales in percents are
the same for VS and  ξ.
The vertical scale is exaggerated to make the figures more readible.
a) VS $ V_S$
b) δ ξ  = ξ−ξref: deviation of ξ with respect to a reference model (ξref PREM
model)
c) G : amplitude of azimuthal anisotropy- parameters



Figure 8 : Histogram of the difference between plate velocities directions and
synthetic SKS anisotropy azimuths in the Pacific plate (After Montagner, 2002).
It is calculated by summing the contributions of each grid point
(5°x5°) weighted by the latitude and the amplitude of anisotropy.



Fig. 9a Average shear velocity structure  (After Ritzwoller et al., 2004)

Fig 9b  Azimuthal delay time in seconds (After Montagner, 2002)

Figure 9 : variations of average S-wave velocity and azimuthal anisotropy
(through the delay time of synthetic SKS splitting) plotted versus the age of
lithosphericsea floor. In both cases the structure below the plate for age
between 60 to 100Ma looks anomalous.



Figure 10 :  Scheme illustrating the difference in the location of maximum
anisotropy between oceans and continents.
Adapted from Gung et al. (2003).



Figure 11: Transition zone  Heterogeneities
Model of shear velocity in the transition zone at 575km depth derived by
inverting fundamental-mode and overtone Rayleigh wave phase velocoties, and
teleseismic body wave data (from Ritsema et al., 2004).



Figure 12 :Mantle heterogeneities and convective flow  below the Pacific
Ocean. Adapted from Gaboret et al. (2003)



Figure A1 : Definition of the Cartesian coordinate system (x,y,z) used in the
calculations. Y is the azimuth of the wavevector with respect to North.

Figure A2 : Partial derivatives for Love waves of the period of fundamental
normal modes 0T40 (left) and 0T120 (right) with respect to the elastic
coefficients of a transversely isotropic earth L, N and density ρ, as a function of
depth in the upper mantle (from Montagner and nataf, 1986). The partial
derivatives with respect to A, C, F are null for these modes. The plots are
normalized to their maximum amplitudes, given for a Δh=1000km thick
perturbed layer. The combinations of elastic coefficients that have the same
partial derivative as L are –Gc, -Gs for the azimuthal terms 2Ψ, and as N are Ec,
Es for the azimuthal term 4Ψ. Note that the amplitude of the L-partial is very
small for the fundamental modes, which is not the case for higher modes.



Depth (km)

Figure A3 : kernels for Rayleigh waves. Same conventinos as for  figure A1 in
the same depth range. The partial derivative  with respect to N has not been
plotted since its amplitude is very small for fundamental modes. Note that 3
partials contribute to the 2Y-azimuthal terms , A-partial for Bc, Bs, F-partial for
Hc, Hs and the largest one L-partial for Gc,Gs.


