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Chapter 1

Model parametrization

We must represent the model by a finite set of numbers in order to perform calculations.

One could, of course, simply discretize a model by sampling it at a sufficiently dense

set of pixels (sometimes called ‘voxels’ in 3D). This has the advantage that one does

not restrict the smoothness of the model, but the price to be paid is a significant loss of

computational efficiency, and this is something we can ill afford. The proper approach

is to parametrize the model - taking care, however, that the imposed smoothness does

not rule out viable classes of models. In addition, the model parametrization should

allow for the data to be fit to the error level attributed to them. Note that these two

conditions are not identical! In practice, one does well to overparametrize and allow

for more parameters than can be resolved. This reduces the risk that the limitations

of the parameter space influence the inversion appreciably. Overparametrization poses

some problems to the inverse problem, but these can be overcome. We shall deal with

that in Chapter 2. If one is forced to underparametrize, effects of bias can be suppressed

by using an ’anti-leakage’ operator such as proposed by Trampert and Snieder [21].

The formal expression of parametrization is through a set of basis functions hj(r),
j = 1, ..., N .

Once a choice of basis functions is made, the model is defined by a finite set of

numbers, the M model parameters mj :

m(r) =
M∑

j=1

mjhj(r) .

We assume the model m(r) represents perturbations in the slowness (1/velocity). The

change δT in the travel time of a body wave is then simply given by a line integral

along the raypath:

δT =
∫

raypath

m(r)ds ,

which allows us to formulate the inverse problem for N observed delay times, ranked

1



2 CHAPTER 1. MODEL PARAMETRIZATION

in a vector d, in matrix form:

di =
∫

path i

m(r)d3r

=
M∑

j=1

mj

∫
path i

hj(r)ds

=
M∑

j=1

Aijmj ,

where the integral is over the total volume V of Earth or Sun. In matrix notation:

Am = d , (1.1)

with the matrix elements given by

Aij =
∫

path i

hj(r)ds . (1.2)

1.1 Global parametrization
When the basis functions hj are nonzero over all or most of space, the parametrization

is called ‘global’. A frequently used global parametrization is in terms of spherical

harmonics:

hk�m(r) = fk(r)Y m
� (θ, φ) , (1.3)

with Y m
� a fully normalized spherical harmonic:

Y m
� (θ, φ) = (−1)m

[(
2� + 1

4π

)
(�−m)!
(� + m)!

] 1
2

Pm
� (cos θ)eimφ .

Here Pm
� (cos θ) is the associated Legendre function and the fk(r) form a set of func-

tions over the depth region of interest. The Y m
� form an orthogonal set of functions

over the surface spanned by co-latitude 0 ≤ θ ≤ π and longitude 0 ≤ φ < 2π. Since

the model values are real, the ±m terms must combine with coefficients that are com-

plex conjugates of each other, so that the sum of the eimφ and e−imφ terms is real. It is

often more practical to do this from the beginning and use real spherical harmonics:

hk�m(r) = fk(r)

⎧⎨
⎩
√

2X
|m|
� (θ) cos mφ −� ≤ m < 0

X0
� m = 0√
2Xm

� sin mφ 0 < m ≤ �

, (1.4)

where the Xm
� are the (real) colatitudinal harmonics:

Xm
� = (−1)m

[
(2� + 1)(l −m)!

4π(l + m)!

] 1
2

Pm
� (cos θ) ,
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with the orthogonality property:

∫ π

0

Xm
� Xm

�′ sin θ dθ =
1
2π

δ��′ .

The radial basis functions fk are often chosen to be orthogonal, although there is no

compelling reason to do so, except that it allows for an easy decomposition (see Exer-

cise 1.2). Masters et al. [14] use natural cubic splines for the radial parametrization.

The spherical harmonic parametrization was first used by Dziewonski [5] and oth-

ers in the pioneering days of seismic tomography. It has the advantage that it allows

for an easy low-pass filtering of the data and comparison with similarly filtered maps

of the geoid, the gravity field, or the heat flux, all of which are available as spherical

harmonic expansions. For each � = 0, 1, ..., there are 2� + 1 zonal harmonics with m
ranging from −� to +�. As is immediately evident from the term eimφ, the smallest

wavelength resolvable is therefore 2π/�max radians, or 40, 030/�max km at the Earth’s

surface. Because every m effectively provides two basis functions, with a dependence

sin mφ and cos mφ respectively, the smallest structure that can be resolved is equal to

half the wavelength: about 20, 000/�max km for the Earth and 2.2× 106/�max km for

the Sun, which has a radius of about 700,000 km.

The disadvantage of spherical harmonics is that many basis functions are needed to

resolve features of geodynamic interest in the Earth. To obtain a horizontal resolution

of 100 km, �max = 200 and the total number of spherical harmonics is about 2�2max

or 80,000. This has to be multiplied by the number of depth basis functions fk(r), so

one easily ends up with more than 106 basis functions that are global: to compute the

model value at one particular location all spherical harmonics must be evaluated at that

location. As the resolution of seismic tomography increased, attention shifted to local

parametrizations instead. The choice need not be absolute: Kuo et al. [12] use a hybrid

approach, in which they invert first for a low-order spherical harmonic parametrization,

then use a local parametrization for the remaining data residuals.

Exercises

Exercise 1.1 Show that the basis defined by (1.4) is orthogonal on the space defined by 0 ≤ r ≤
a, 0 ≤ θ ≤ π and 0 ≤ φ < 2π if the radial functions fk(r) are chosen to be orthogonal.

Exercise 1.2 If we expand a model m(r) into an orthogonal basis hk(r):

m(r) =
X

k

akhk(r) ,

show that we can find the coefficients ak from:

ak =

Z
V

m(r)hk(r)d3r .
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1.2 Local parametrization
The simplest example of a local parametrization is to divide the earth up into cells, e.g.:

hj(r) = ΔV
− 1

2
j if r in cell i (1.5)

= 0 elsewhere , (1.6)

where ΔVj is the volume of cell j. Homogeneous cell parametrizations were applied

in the very first local studies, but quickly found their way into more global inversions.

If the cells do not overlap, the basis functions scaled in this way are orthonormal:∫
V

hi(r)hj(r)d3r = δij

Often, the cells are equidistant in the latitude- and longitude directions, at least over

wide latitude bands. Cells can then be uniquely ordered in order of increasing coordi-

nate and it is easy to find the cell that contains a specific location r.

The computation of the matrix A in (1.1) takes a considerable amount of CPU time.

The generic tomographic inverse problem deals with integral equations of the form:

di =
∫

δm(r)ds (1.7)

where δm(r) is the perturbation in the slowness (1/velocity) of the model at location

r(s) on the raypath. If we adopt a parametrization in the form of tetrahedra, there are N
model nodes, where we seek to know the model parameters δm, which we abbreviate

by omitting the δ, writing them as mi for node i. Given four vertices with such values

m1, ...,m4, we interpolate to find the slownbess perturbation at other locations within

the tetrahedron:

δm(x, y, z) =
4∑

k=1

bk(x, y, z)mk .

where the coefficients bk are calculable, e.g. for b4:

b4(r) =
(r − r1) · [(r2 − r1)× (r3 − r1)]
(r4 − r1) · [(r2 − r1)× (r3 − r1)]

. (1.8)

and similar for the other three after permutation of the vertex indices.

Note that each node is part of more than one tetrahedron, and therefore combined

with several mt
k, k = 1, ..., 4, the four vertices of tetrahedron t. Thus, we can split the

line integral up into small segments dsp at locations rp located in tetrahedron tp and

sum:

di =
∑

p

δm(rp)ds =
∑

p

4∑
k=1

b
tp

k (rp)m
tp

k dsp .

To obtain sufficient accuracy, the size of the segments dsp should be an order of mag-

nitude smaller than the size of the tetrahedron over which one interpolates. If we map
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each vertex back to its original parameter index j, we see that every line element adds

to four different elements of row i in the matrix, i.e.

Aij ← Aij + b
tp

k (rp)dsp (k = 1, ..., 4) ,

where j is the model index belonging to vertex node m
tp

k and where the Aij are initially

zero.
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Chapter 2

Linear inversion

In Chapter 1 we saw how the parametrization of a continuous model allows us to for-

mulate a discrete linear relationship between data d and model m. With unknown

corrections added to the model vector, this linear relationship remains formally the

same if we write the physical model parameters as m1 and the corrections as m2 but

combine both in one vector m:

A1m2 + A2m2 = Am = d (1.1) again.

Assuming we have M1 model parameters and M2 corrections, this is a system of N
equations (data) and M = M1 +M2 unknowns. For more than one reason the solution

of the system is not straightforward:

• Even if we do not include multiple measurements along the same path, many of

the N rows will be dependent. Since the data always contain errors, this implies

we cannot solve the system exactly, but have to minimize the misfit between

Am and d. For this misfit we can define different norms, and we face a choice

of options.

• Despite the fact that we have (usually) many more data than unknowns (i.e.

N �M ), the system is almost certainly ill-posed in the sense that small errors

in d can lead to large errors in m; a parameter mj may be completely unde-

termined (Aij = 0 for all i) if it represents a node that is far away from any

raypath. We cannot escape making a subjective choice among an infinite set of

equally satisfactory solutions by imposing a regularization strategy.

• For large M , the numerical computation of the solution has to be done with an

iterative matrix solver which is often halted when a satisfactory fit is obtained.

Such efficient shortcuts interfere with the regularization strategy.

We shall deal with each of these aspects in succession. The appendix introduces some

concepts of probability theory that are needed in this chapter.

7
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2.1 Maximum likelihood estimation and least squares
In experimental sciences, the most commonly used misfit criterion is the criterion of

least squares, in which we minimize χ2 (‘chi square’) as a function of the model:

χ2(m) =
N∑

i=1

(∑M
j=1 |Aijmj − di|2

σ2
i

)
= min, (2.1)

where σi is the standard deviation in datum i. χ2 is a direct measure of the data misfit,

in which we weigh the misfits inversely with their standard errors σi.

For uncorrelated and normally distributed errors, the principle of maximum likeli-

hood leads naturally to the least squares definition of misfit. If there are no sources of

bias, the expected value E(di) of di (the average of infinitely many observations of the

same observable) is equal to the ‘correct’ or error-free value. In practice, we have only

one observation for each datum, but we usually have an educated guess of the magni-

tude of the errors. We almost always use a normal distribution for errors, and assume

errors to be uncorrelated, such that the probability density is given by a Gaussian or

‘normal’ distribution of the form:

P (di) =
1

σi

√
2π

exp
(
−|di − E(di)|2

2σ2
i

)
. (2.2)

The joint probability density for the observation of a N -tuple of data with independent

errors d = (d1, d2, ..., dN ) is found by multiplying the individual probability densities

for each datum:

P (d) =
N∏

i=1

1
σi

√
2π

exp
(
−|di − E(di)|2

2σ2
i

)
. (2.3)

If we replace the expected values in (2.3) with the predicted values from the model

parameters, we obtain again a probability, but now one that is conditional on the model

parameters taking the values mj :

P (d|m) =
N∏

i=1

1
σi

√
2π

exp

(
−|di −

∑
j Aijmj |2

2σ2
i

)
. (2.4)

We usually assume that there are no extra errors introduced by the modelling (e.g. we

ignore the approximation errors introduced by linearizations, neglect of anisotropy, or

the shortcomings of ray theory etc.). In fact, if such modelling errors are also uncorre-

lated, unbiased and normally distributed, we can take them into account by including

them in σi
1 – but this is a big ‘if’.

Clearly, one would like to have a model that is associated with a high probability

for its predicted data vector. This leads to the definition of the likelihood function L
for the model m given the observation of the data d:

L(m|d) = P (d|m) ∝ exp
(
−1

2
χ2(m)

)
.

1See Tarantola [19] for a much more comprehensive discussion of this issue.
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r=d−Amd

R(A)

Figure 2.1: If the data vector d does not lie in the range of A, the best we can do is

minimize the length of the residual vector r. This implies that r must be perpendicular

to any possible vector Ay.

Thus, maximizing the likelihood for a model involves minimizing χ2. Since this in-

volves minimizing the sum of squares of data misfit, the method is more generally

known as the method of least squares. The strong point of the method of least squares

is that it leads to very efficient methods of solving (1.1). Its major weakness is the

reliance on a normal distribution of the errors, which may not always be the case. Be-

cause of the quadratic dependence on the misfit, outliers – misfits of several standard

deviations – have an influence on the solution that may be out of proportion, which

means that errors may dominate in the solution. For a truly normal distribution, large

errors have such a low probability of occurrence that we would not worry about this.

In practice however, many data do suffer from outliers. For picked arrival times Jef-

freys [11] already observed that the data have a tail-like distribution that deviates from

the Gaussian for large deviations from the mean tm, mainly because a later arrival is

misidentified as P or S:

P (t) =
1− ε

σ
√

2π
e−(t−tm)2/2σ2

+ εg(t),

where the probability density g(t) varies slowly and where ε� 1. A simple method to

bring the data distribution close to normal is to reject outliers with a delay that exceeds

the largest delay time to be expected from reasonable effects of lateral heterogeneity.

This decision can be made after a first trial inversion: for example, one may reject all

data that leave a residual in excess of 3σ after a first inversion attempt.

If we divide all data – and the corresponding row of A – by their standard devia-

tions, we end up with a data vector that is univariant, i.e. all standard deviations are

equal to 1. Thus, without loss of generality, we may assume that the data are univari-

ant, in which case we see from (2.1) that χ2 is simply the squared length of the residual

vector |r| = |d − Am|. From Fig. 2.1 we see that r is then perpendicular to the

subspace spanned by all vectors Ay (the ‘range’ R(A) of A). For if it was not, we

could add a δm to m such that Aδm reduces the length of r. Thus, for all y the dot

product between r and Ay must be zero:

r ·Ay = AT r · y = AT (d−Am) · y = 0,

where AT is the transpose of A (i.e. AT
ij = Aji). Since this dot product is 0 for all y,
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A

2

| m |2
�
�
�
�

�
�
�
�
B

χ

Figure 2.2: The L- or trade-off curve between χ2 and model norm |m|2.

clearly AT (d−Am) = 0, or:

AT Am = AT d, (2.5)

which is known as the set of ‘normal equations’ to solve the least squares problem.

χ2 is an essential statistical measure of the goodness of fit. In the hypothetical case

that we satisfy every datum with a misfit of one standard deviation we find χ2 = N ;

clearly values much higher than N are unwanted because the misfit is higher than could

be expected from the knowledge of data errors, and values much lower than N indicate

that the model is trying to fit the data errors rather than the general trend in the data. For

example, if two very close rays have travel time anomalies differing by only 0.5 s and

the standard deviation is estimated to be 0.7 s, we should accept that a smooth model

predicts the same anomaly for each, rather than introducing a steep velocity gradient

in the 3D model to try to satisfy the difference. Because we want χ2 ≈ N , it is often

convenient to work with the reduced χ2 or χ2
red, which is defined as χ2/N , so that the

optimum solution is found for χ2
red ≈ 1.

But how close should χ2 be to N? Statistical theory shows that χ2 itself has a

variance of 2N , or a standard deviation of
√

2N . Thus, for 1,000,000 data the true

model would with 67% confidence be found in the interval χ2 = 1, 000, 000± 1, 414.

Such theoretical bounds are almost certainly too narrow because our estimates of the

standard deviations σi are themselves uncertain. For example, if the true σi are equal

to 0.9 but we used 1.0 to compute χ2, our computed χ2 itself is in error (i.e. too low)

by almost 20%, and a model satisfying this level of misfit is probably not good enough.

It is therefore important to obtain accurate estimates of the standard errors. Provided

one is confident that the estimated standard errors are unbiased, one should still aim for

a model that brings χ2 very close to N , say to within 20 or 30%.

An additional help in deciding how close one wishes to be to a model that fits

at a level given by χ2 = N is to plot the trade-off between the model norm and χ2

(sometimes called the L-curve), schematically shown in Fig. 2.2. If the trade-off curve

shows that one could significantly reduce the norm of the model while paying only a

small price in terms of an increase in χ2 (point A in Fig. 2.2), this is an indication

that the standard errors in the data have been underestimated. For common data errors

do not correlate between nearby stations, but the true delays should correlate – even

if the Earth’s properties vary erratically (because of the overlap in finite-frequency

sensitivity). The badly correlating data can only be fit by significantly increasing the
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norm and complexity of the model, which is what we see happening on the horizontal

part of the trade-off curve. Conversely, if we notice that a significant decrease in χ2

can be obtained at the cost of only a minor increase in model norm (point B), this

indicates an overestimate of data errors and tells us we may wish to accept a model

with χ2 < N . If the deviations required are unexpectedly large, this is an indication

that the error estimation for the data may need to be revisited.

Depending on where on the L-curve we find that χ2 = N , we find that we do or

do not have a strong constraint on the norm of the model. If the optimal data fit is

obtained close to point B where the L-curve is steep, even large changes in χ2 have

little effect on the model norm. On the other hand, near point A even large changes

in the model give only a small improvement of the data fit. Both A and B represent

unwanted situations, since at A we are trying to fit data errors, which leads to erratic

features in the model, whereas at B we are damping too strongly. In a well designed

tomography experiment, χ2 ≈ N near the bend in the L-curve.

We used the term ‘model norm’ here in a very general sense – one may wish to

inspect the Euclidean |m|2 as well as more complicated norms that we shall encounter

in section 2.4.

Early tomographic studies often ignored a formal statistical appraisal of the good-

ness of fit, and merely quoted how much better a 3D tomographic model satisfies the

data when compared to a 1D (layered or spherically symmetric) background or ‘start-

ing’ model, using a quantity named ‘variance reduction’, essentially the reduction in

the Euclidean norm of the misfit vector. This reduction is as much a function of the

fit of the 1D starting model as of the data fit itself – i.e. the same 3D model can have

different variance reductions depending on the starting model – and is therefore useless

as a statistical measure of quality for the tomographic model.

Exercises

Exercise 2.1 Derive the normal equations by differentiating the expression for χ2 with respect

to mk for k = 1, ..., M . Assume univariant data (σi = 1).

Exercise 2.2 Why can we not conclude from (2.5) that Am ≡ d?

2.2 Singular value decomposition
Though the least squares formalism handles the incompatibility problem of data in an

overdetermined system, we usually find that AT A has a determinant equal to zero,

i.e. eigenvalues equal to zero, and its inverse does not exist. Even though in tomo-

graphic applications AT A is often too large to be diagonalized, we shall analyse the

inverse problem using singular values (‘eigenvalues’ of a non-square matrix), since this

formalism gives considerable insight.

Let vi be an eigenvector of AT A with eigenvalue λ2
i , so that AT Av = λ2

i v. We

may use squared eigenvalues because AT A is symmetric and has only non-negative,

real eigenvalues. Its eigenvectors are orthogonal. The choice of λ2 instead of λ as
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✕
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λ

Figure 2.3: (a) The original matrix system Am = d. (b) The eigenvalue problem for

the least-squares matrix AT A.

eigenvalue is for convenience: the notation λ2
i avoids the occurrence of

√
λi later in

the development. We can arrange all M eigenvectors as columns in an M ×M matrix

V and write:

AT AV = V Λ2 (2.6)

The eigenvectors are normalized such that V T V = V V T = I .

With (2.6) we can study the underdetermined nature of the problem Am = d, of

which the least squares solution is given by the system AT Am = AT d. The eigen-

vectors vi span the M -dimensional model space so m can be written as a linear com-

bination of eigenvectors: m = V y. Since V is orthonormal, |m| = |y| and we can

work with y instead of m if we wish to restrict the norm of the model. Using this:

AT AV y = V Λ2y = AT d ,

or, multiplying both on the left with V T and using the orthogonality of V :

Λ2y = V T AT d .

Since Λ is diagonal, this gives yi (and with that m = V y) simply by dividing the i-th
component of the vector on the right by λ2

i . But clearly, any yi which is multiplied by a

zero eigenvalue can take any value without affecting the data fit! We find the minimum
norm solution, the solution with the smallest |y|2, by setting such components of y to

0. If we rank the eigenvalues λ2
1 ≥ λ2

2 ≥ ...λ2
K > 0, 0, ..., 0, then the last M − K

columns of V belong to the nullspace of AT A. We truncate the matrices V and Λ to

an M ×K matrix VK and a K ×K diagonal matrix Λ to obtain the minimum norm

estimate:

m̂min norm = VKΛ−2
K V T

K AT d (2.7)

Note that the inverse of ΛK exists because we have removed the zero eigenvalues. The

orthogonality of the eigenvectors still guarantees V T
K VK = IK , but now VKV T

K 
=
IM .

To see how errors in the data propagate into the model, we use the fact that (2.7)

represents a linear transformation of data with a covariance matrix Cd. The posteriori

covariance of transformed data Td is equal to TCdT
T (see equation 2.35 in the ap-

pendix). In our case we scaled the data such that Cd = I so that the posteriori model



2.2. SINGULAR VALUE DECOMPOSITION 13

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

TA d d

A

Am

T

m

A

Figure 2.4: Mappings between the model space (left) and the data space (right). The

range of A is indicated by the grey area within the data space. The range of the back-

projection AT is indicated by the grey area in the model space.

covariance is:

Cm̂ = VKΛ−2
K V T

K AT IAVKΛ−2
K V T

K

= VKΛ−2
K Λ2

KΛ−2
K V T

K

= VKΛ−2
K V T

K . (2.8)

Thus the posteriori variance of the estimate for parameter mi is given by2:

σ2
mi

=
K∑

j=1

V 2
ij

λ2
j

. (2.9)

This equation makes it clear that removing zero singular values is not sufficient, since

the errors blow up as λ−2
j , rendering the incorporation of small λj very dangerous.

Dealing with small eigenvalues is known as regularization of the problem. Before we

discuss this in more detail, we need to show the connection between the development

given here and the theory of singular value decomposition which is more commonly

found in the literature.

One way of looking at the system Am = d is to see the components mi as weights

in a summation of the columns of A to fit the data vector d. The columns make up the

range of A in the data space (Fig. 2.4). Similarly, the rows of A – the columns of

AT – make up the range of the backprojection AT in the model space. The rest of

the model space is the nullspace: if m is in the nullspace, Am = 0. Components in

the nullspace do not contribute to the data fit, but add to the norm of m. We find the

minimum norm solution by avoiding any components in the nullspace, in other words

by selecting a model in the range of AT :

m̂ = AT y

and find y by solving for:

AAT y = d

2To distinguish data uncertainty from model uncertainty we denote the model standard deviation as σmi

and the data standard deviation as σi.
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Figure 2.5: (a) The full eigenvalue problem for AAT leads to a matrix with small or

zero eigenvalues on the diagonal. (b) removing zero eigenvalues has no effect on A.

The determinant of AAT is likely to be zero, so just as in the case of least squares

we shall wish to eliminate zero eigenvalues. Let the eigenvectors of AAT be ui with

eigenvalues λ̃2
i :

AAT U = UΛ̃2 (2.10)

Since AAT is symmetric, the eigenvectors are orthogonal and we can scale them to be

orthonormal, such that UT U = UUT = I . Multiplying (2.10) on the left by AT and

grouping AT U we see that AT U is an eigenvector of AT A:

AT A(AT U) = (AT U)Λ̃2

and comparison with (2.6) shows that AT ui must be a constant×vi, and λ̃i = λi. We

choose the constant to be λi, so that

AT U = V Λ . (2.11)

Multiplying this on the left by A we obtain:

AAT U = UΛ2 = AV Λ ,

or, dividing by λi for λi 
= 0 and setting Avi = λiui if vi is in the nullspace::

AV = UΛ . (2.12)

In the same way, by multiplying (2.12) on the right by V T we find:

A = UΛV T (2.13)

which is the singular value decomposition of A. Note that in this development we have

carefully avoided using the inverse of Λ, so there is no need to truncate it to exclude

zero singular values. However, because the tail of the diagonal matrix Λ contains only

zeroes, (2.13) is equivalent to the truncated version (Fig. 2.5):

A = UΛV T = UKΛKV T
K (2.14)
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Exercises

Exercise 2.3 Show that the choice (2.11) indeed implies that UT U = I . Hint: use (2.12).

Exercise 2.4 Show that the eigenvalues of AT A cannot be negative.

2.3 Tikhonov regularization
The truncation to include only nonzero singular values is an example of regularization

of the inverse problem. Removing zero λi is not sufficient however, since small sin-

gular values may give rise to large modelling errors, as shown by (2.9). This equation

tells us that small errors in the data vector may cause very large excursions in model

space in the direction of vk if λk � 1. It seems thus wise to truncate V in (2.13) even

further, and exclude eigenvectors belonging to small singular values. The price we pay

is a small increase in χ2, but we are rewarded by a significant reduction in the mod-

elling error. We could apply a sharp cut-off by choosing K at some nonzero threshold

level for the singular values. Less critical to the choice of threshold is a tapered cut-

off. We show that the latter approach is equivalent to adding M equations of the form

εnmi = 0, with εn small, to the tomographic system. Such equations act as artificial

‘data’ that bias the model parameters towards zero:(
A

εnI

)
m =

(
d
0

)
. (2.15)

If the j−th column of A – associated with parameter mj – has large elements, the

addition of one additional constraint εnmj = 0 will have very little influence. But the

more mj is underdetermined by the undamped system, the more the damping will push

mj towards zero. The least squares solution of (2.15) is:

(AT A + ε2nI)m = AT d . (2.16)

The advantage of the formulation (2.15) is that it can easily be solved iteratively, with-

out a need for singular value decomposition. But the solution of (2.15) does have a

simple representation in terms of singular values, and it is instructive to analyse it with

SVD. If vk is an eigenvector of AT A with eigenvalue λ2
k, then the damped matrix

gives:

(AT A + ε2nI)vk = (λ2
k + ε2n)vk , (2.17)

and we see that the damped system has the same eigenvectors but with raised eigenval-

ues λ2
k + ε2n > 0. The minimum norm solution (2.7) is therefore replaced by:

m̂damped = VK(Λ2
K + ε2nI)−1V T

K AT d (2.18)

with the posteriori model variance given by:

σ2
mi

=
K∑

j=1

V 2
ij

λ2
j + ε2n

. (2.19)
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Since there are no zero eigenvalues, we may set K = N , but of course this maximizes

the variance and some truncation may still be needed. For simplicity, we assumed a

damping with the same εn everywhere on the diagonal. The method is often referred

to as Tikhonov regularization, after its original discoverer [20]. Because one adds ε2 to

the diagonal of AT A it is also known as ‘ridge regression’.

Spakman and Nolet [17] vary the damping factor εn along the diagonal. When

corrections are part of the model, one should vary damping factors such that damping

results in corrections that are reasonable in view of the prior uncertainty (for example,

one would judge corrections as large as 100 km for hypocentral parameters usually

unacceptable and increase εn for those corrections).

A comparison of (2.19) and with (2.9) shows that damped model errors blow up

at most by a factor ε−1
n . Thus, damping reduces the variance of the solution. This

comes at a price however: by discarding eigenvectors, we reduce our ability to shape

the model. The small eigenvalues are usually associated with vectors that are strongly

oscillating in space: the positive and negative parts cancel upon integration and the

resulting integral (1.7) is small. Damping small eigenvalues is thus expected to lead

to smoother models. However, even long-wavelength features of the model may be

biased towards zero because of regularization.

The fact that biased estimations produce smaller variances is a well known phe-

nomenon in statistical estimation, and it is easily misunderstood: one can obtain a very

small model parameter mi with a very small posteriori variance σ2
i , yet learn nothing

about the model because the bias is of the order of the true mi. We shall come back

to this in the section on resolution, but first investigate a more powerful regularization

method, based on Bayesian statistics.

Exercises

Exercise 2.5 Show that the minimization of |Am − d|2 + ε2|m|2 leads to (2.16).

Exercise 2.6 In the L-curve for (2.18), indicate where ε = 0 and where ε →∞.

2.4 Bayesian inference
The simple Tikhonov regularization by norm damping we introduced in the previous

section , while reducing the danger of excessive error propagation, is usually not satis-

factory from a geophysical point of view. At first sight, this may seem surprising: for,

when the mi represent perturbations with respect to a background model, the damping

towards 0 is defensible if we prefer the model values given by the background model

in the absence of any other information. However, if the information given by the data

is unequally distributed, some parts of the model may be damped more than others, in-

troducing an apparent structure in m that may be very misleading. The error estimate

(2.19) does not represent the full modelling error because it neglects the bias. In gen-

eral, we would like the model to have a minimum of unwarranted structure, or detail.

Jackson [10] and Tarantola [18], significantly extending earlier work by Franklin [7],

introduced the Bayesian method into geophysical inversion to deal with this problem,
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named after the Reverend Thomas Bayes (1702-1761), a British mathematician whose

theorem on joint probabilities is a cornerstone of this inference method.

We shall give a brief exposé of Bayesian estimation for the case of N observations

in a data vector dobs. Let P (m) be the prior probability density for the model m =
(m1, m2, ...,mM ), e.g. a Gaussian probability of the form:

P (m) =
1

(2π)M/2

1
|det Cm|1/2

exp
(
−1

2
m ·C−1

m m

)
(2.20)

Here, Cm is the prior covariance matrix for the model parameters. With ‘prior’ we

mean that we generally have an idea of the allowable variations in the model values,

e.g. how much the 3D Earth may differ from a 1D background model without violating

more general laws of physics. We may express such knowledge as a prior probabil-

ity density for the model values. The diagonal elements of Cm are the variances of

that prior distribution. The off-diagonal elements reflect the correlation of model pa-

rameters – often it helps to think of them as describing the likely ‘smoothness’ of the

model.

In a strict Bayesian philosophy such constraints may be ‘subjective’. This, how-

ever, is not to say that we may impose constraints following the whim of an arbitrary

person. An experienced geophysicist may often develop a very good intuition of the

prior uncertainty of model parameters, perhaps because he has done experiments in

the laboratory on analogue materials, or because he has experience with tomographic

inversions in similar geological provinces. We shall classify such defensible subjective

notions to be ‘objective’ after all.

The random errors in our observations make that the observed data vector dobs

deviates from the true (i.e. error-free) data d. For the data we assume the normal distri-

bution (2.2). Assuming the linear relationship Am = d has no errors (or incorporating

those errors into σi as discussed before), we find the conditional probability density for

the observed data, given a model m:

P (d|m) =
1

(2π)N/2

1
|det Cd|1/2

exp
(
−1

2
(Am− dobs) ·C−1

d (Am− dobs)
)

,

(2.21)

where Cd is the matrix with data covariance, usually taken to be diagonal with entries

σ2
i because we have little knowledge about data correlations.

Though we have an expression for the data probability P (d|m), for solution of the

inverse problem we are more interested in the probability of the model, given the ob-
served data dobs. This is where Bayes’ theorem is useful. It starts from the recognition

that the joint probability can be split up in a conditional and marginal probability in

two ways, assuming the probabilities for model and data are independent:

P (m,dobs) = P (m|dobs)P (dobs) = P (dobs|m)P (m),

from which we find Bayes’ theorem:

P (m|dobs) =
P (dobs|m)P (m)

P (dobs)
. (2.22)
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using (2.20) and (2.21):

P (m|dobs) ∝ exp
[
−1

2
(Am− dobs) ·C−1

d (Am− dobs)− 1
2
m ·C−1

m m

]
.

Thus, we obtain the maximum likelihood solution by minimizing:

(Am− dobs) ·C−1
d (Am− dobs) + m ·C−1

m m = χ2(m) + m ·C−1
m m = min,

or, differentiating with respect to mi:

AT C−1
d (Am− dobs) + C−1

m m = 0.

One sees that this is – again – a system of normal equations belonging to the ‘damped’

system: (
C
− 1

2
d A

C
− 1

2
m

)
m =

(
C
− 1

2
d d
0

)
. (2.23)

Of course, if we already scaled the data to be univariant the data covariance matrix is

Cd = I . This simply shows that we are sooner or later obliged to scale the system

with the data uncertainty. The prior smoothness constraint is unlikely to be a ‘hard’

constraint, and in practice we face again a trade-off between the data fit and the damp-

ing of the model, much as in Fig. 2.2. We obtain a manageable flexibility in the

trade-off between smoothness of the model and χ2 by scaling C
− 1

2
d with a scaling fac-

tor ε. Varying ε allows us to tweak the model damping until χ2 ≈ N . Equation (2.23)

is thus usually encountered in the equivalent, simplified form:(
A

εC
− 1

2
m

)
m =

(
d
0

)
. (2.24)

How should one specify Cm? The model covariance essentially tells us how model pa-

rameters are correlated. Usually, such correlations are only high for nearby parameters.

Thus, Cm smoothes the model when operating on m. Conversely, C−1
m roughens the

model, and (2.24) expresses the penalization of those model elements that dominate

after the roughening operation. The simplest roughening operator is the Laplacian∇2,

which is zero when a model parameter is exactly the average of its neighbours. If we

parametrize the model with tetrahedra or blocks, so that every node has well-defined

nearest neighbours, we can minimize the difference between parameter mi and the

average of its neighbours (Nolet [15]):

1
2

∑
i

1
Ni

∑
j∈Ni

(mi −mj)2 = min,

whereNi is the set of Ni nearest neighbours of mode i. Differentiating with respect to

mk gives M equations:

mk − 1
Nk

∑
j∈Nk

mj = 0, (2.25)
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in which we recognize the k-th row of C
− 1

2
m m in (2.24).

One disadvantage of the system (2.24) is that it often converges much more slowly

than the Tikhonov system (2.15) in iterative matrix solvers (VanDecar and Snieder

[22]). The reason is that we are simultaneously solving a system arising from a set

of integral equations, and the regularization system which involves finite-differencing.

Without sacrificing the Bayesian philosophy, it is possible to transform (2.24) to a

simple norm damping. Spakman and Nolet [17] introduce m = C
1
2
mm′. Inserting this

into (2.24) we find: (
AC

1
2
m

εI

)
m′ =

(
d
0

)
(2.26)

Though it is not practical to invert the matrix C
− 1

2
m that is implicit in (2.25) to find

an exact expression for C
1
2
m, many explicit smoothers of m may act as an appropriate

‘correlation’ matrix C
1
2
m for regularization purposes. After inversion for m′, the tomo-

graphic model is obtained from the smoothing operation m = C
1
2
mm′. The system

(2.26) has the same form as the Tikhonov regularization (2.15). Despite this resem-

blance, in my own experience the acceleration of convergence is only modest compared

to inverting (2.24) directly.

2.5 Appendix: some concepts of probability theory and
statistics

I assume the reader is familiar with discrete probabilities, such as the probability that a flipped

coin will come up with head or tail. If added up for all possible outcomes, the sum of all

probabilities is 1.

This concept of probability cannot directly be applied to variables that can take any value

within prescribed bounds. For such variables we use probability density. The probability density

P (X0) for a random variable X at X0 is equal to the probability that X is within the interval

X0 ≤ X ≤ X0 + dX , divided by dX .

This can be extended to multiple variables. If P (d) is the probability density for the data in

vector d, then the probability that we find the data within a small N -dimensional volume Δd in

data space is given by 0 ≤ P (d)Δd ≤ 1. We only deal with normalized probability densities,

i.e. the integral over all data: Z
P (d)dNd = 1 . (2.27)

Joint probability densities give the probability that two or more random variables take a partic-

ular value, e.g. P (m, d). If the distributions for the two variables are independent, the joint
probability density is the product of the individual densities:

P (m, d) = P (m)P (d). (2.28)

Conversely, one finds the marginal probability density of one of the variables by integrating out

the second variable:

P (m) =

Z
P (m, d)dNd. (2.29)
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The conditional probability density gives the probability of the first variable under the condition

that the second variable has a given value, e.g. P (m|dobs) gives the probability density for

model m given an observed set of data in dobs.

The expectation or expected value E(X) of X is defined as the average over all values of X
weighted by the probability density:

X̄ ≡ E(X) =

Z
P (X)X dX. (2.30)

The expectation is a linear functional:

E(aX + bY ) = aE(X) + bE(Y ) , (2.31)

and for independent variables it is separable:

E(XY ) = E(X)E(Y ) . (2.32)

The variance is a measure of the spread of X around its expected value:

σ2
X = E[(X − X̄)2] , (2.33)

where σX itself is known as the standard deviation. The covariance between two random vari-

ables X and Y is defined as

Cov(X, Y ) = E[(X − X̄)(Y − Ȳ )] . (2.34)

In the case of an N -tuple of variables this defines an N×N covariance matrix, with the variance

on the diagonal. The covariance matrix of a linear combination of variables is found by applying

the linearity (2.31). Consider a linear transformation x = T y. Since the spread of a variable

does not change if we redefine the average as zero, we can assume that E(xi) = 0 without loss

of generality. Then:

Cov(xi, xj) = E

 X
k

Tijyk

X
l

Tjlyl

!
=
X
kl

TijTjlE(ykyl) =
X
kl

TijTjlCov(yk, yl) ,

or, in matrix notation:

Cx = T CyT T . (2.35)



Chapter 3

Resolution and error analysis

One of the most important tasks of the seismic tomographer is to make sure he or

she knows the limitations of the final model, and is able to convey that knowledge to

others in a digestible form. This is not an easy problem: even within a narrow band of

acceptable χ2 values, there will be infinitely many models that satisfy the data at this

misfit level. Yet some features will change little among those models. Such features are

‘resolved’ if the change is less than some pre-specified variance. Of course, one cannot

calculate infinitely many models and usually resigns oneself to present one possible

inversion outcome with an assessment of its resolution and uncertainty.

To estimate resolution and uncertainty is a major task that will usually consume

far more time than the actual inversion. As we shall see, all of the methods we cur-

rently know have shortcomings. Our means to present the results in a accessible form

are equally poorly developed. There exists also some confusion about the meaning of

damping parameters and their role in resolution- and sensitivity tests. Many tomog-

raphers do not clearly distinguish between Bayesian constraints (damping parameters

based on somewhat objective information) and damping parameters used to obtain a

smooth model, which are inherently subjective if not based on prior information.

3.1 Resolution matrix
We restrict ourselves to the resolution and error analysis of linear problems of the form

Am = d. Whatever method we use to find a solution m̂, the estimate can be formally

expressed as a linear combination of the data:

m̂ = A−d . (3.1)

In virtually all cases, A− is not a true inverse and therefore called a ‘generalized in-

verse’. This means that neither A−A nor AA− necessarily equals the identity matrix,

but a well-designed solver will make sure that both expressions are at least close to I .

For the second product this implies that we impose that Am̂ = AA−d ≈ d (good

data fit). The consequences of the reverse product A−A not being equal to I become

visible when we formally analyse how close m̂ is to the true Earth model mtrue. We

21
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write the observed data d as the sum of the ‘true’, i.e. error-free data and an error term

e:

d = dtrue + e = Amtrue + e.

For simplicity we assume that the linear mapping Am is adequate to predict the error-

free data and does not introduce errors of its own, e.g. because the model parametriza-

tion is inadequate. From this we find the error in the solution m̂:

m̂−mtrue = A−d−mtrue = (A−A− I)mtrue + A−e , (3.2)

and it is clear that the total model error has two components: lack of resolution because

A−A 
= I and propagated data errors (A−e).

Another way to look at the effect of resolution on model error is to recognize that

in the error-free case we have:

m̂ = A−Amtrue = Rmtrue , (3.3)

where R = A−A is known as the resolution matrix, a kind of blurring window through

which we can observe the true Earth. If the problem at hand is small enough for sin-

gular value decomposition, R can be constructed from the eigenvectors vi of AT A.

Substituting the truncated SVD solution A− = VKΛ−1
K UT

K we find:

R = A−A = VKΛ−1
K UT

KUKΛKV T
K = VKV T

K . (3.4)

The model estimate m̂i is called unbiased if (3.3) yields true averages, i.e. if

M∑
j=1

Rij = 1 . (3.5)

It is clear that (3.4) does not guarantee bias-free estimates because the truncation to

K eigenvectors causes VKV T
K 
= I and in fact, minimum-norm solutions are usually

heavily biased. The problem is that R represents both the resolution and the bias, i.e.∑
j Rij < 1 (and sometimes much smaller than 1) so that

∑
j Rijm

true
j is not the true

average over model parameters, but over the damped one. This reveals a shortcoming

of resolution estimations using R that is serious, even though it is widely used for

smaller tomographic experiments. Another shortcoming of the method is that most

global tomographic problems are too large for singular value analysis, so that R cannot

even be computed. However, both Vasco et al. [23] and Boschi et al. [1] have been

able to compute the resolution matrix even for large systems, and for those with access

to powerful parallel machines this problem may be less serious.

When calculating the posteriori model covariance Cm̂ with (2.8), we must be care-

ful with the choice of the damping. From a Bayesian point of view, we should only use
objective constraints on the model values itself or on their correlations (off-diagonal

elements in the prior model covariance). In theory, there are no physical constraints

on the correlation lengths, since the Earth may contain very sharp transitions between

different compositions of the rock. This implies that we should assume the prior Cm̂ to

be diagonal in (2.24) when computing R with a matrix that contains prior constraints.
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Thus, even if we obtain a preferred solution using smoothness constraints, it would give

a falsely optimistic estimate of resolution if we include those constraints in the system

when computing the resolution matrix. This confines us to simple ridge regression as

in (2.15), in which the regression coefficient ε2n assures us that the parameters of the so-

lution remain within physically acceptable bounds. Usually, such physical constraints

require an εn that is less than the one we used to obtain the preferred solution, i.e. it is

less than the coefficient used to obtain a χ2 close to N and it may not be a preferred

‘smooth’ solution.

The two roles of εn – the role of regularization parameter and of an objective prior

constraint to the model – result in two options for the formulation of the resolution

matrix. We write (2.15) in the form:

Aεm = d0 , with Aε =
(

A
εnI

)
, d0 =

(
d
0

)
.

If the role of εn is only that of a damping parameter, with no prior connection to the

true Earth, the trailing zero’s of d0 are not considered as true ‘data’, and d = Amtrue.

With that

m̂ = V (Λ2 + ε2nI)−1V T AT
ε d0

= V (Λ2 + ε2nI)−1V T AT d

= V (Λ2 + ε2nI)−1V T AT Amtrue

= V (Λ2 + ε2nI)−1V T V Λ2V T mtrue

= V (Λ2 + ε2nI)−1Λ2V T mtrue ,

so that the resolution matrix for the damped solution is defined as

Rdamped = V (Λ2 + ε2nI)−1Λ2V T . (3.6)

On the other hand, if we assume that the zero’s at the trailing end of d0 and their

standard deviations ε−1
n contain real prior information about the allowed prior variance

of the model parameters, then we must set d0 = Aεm
true. This gives:

m̂ = V (Λ2 + ε2nI)−1V T AT
ε d0

= V (Λ2 + ε2nI)−1V T AT
ε Aεm

true

= V (Λ2 + ε2nI)−1V T V (Λ2 + ε2I)V T mtrue

= V V T mtrue ,

with the expected outcome that the resolution matrix for a model estimate from Bayesian

inference is the unit matrix:

RBayes = V V T = I . (3.7)

In this case we resolve every component of the model completely. Most likely, how-

ever, the posterior model variance given by (2.19) is now uncomfortably high, and we

shall wish to truncate the number of eigenvectors, again introducing a bias.
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One could conceivably defend a more permissive philosophy and argue that heavily

oscillating solutions with strong gradients are ‘unphysical’, so that the regularization

itself tells us what limits to impose on parameter derivatives; this would equate sub-

jective damping parameters with objective ones and allow us to include smoothness

damping even when analysing resolution. However, necessity may be the mother of

invention in this case: Shearer and Earle [16], for example, analyse scattered wave en-

ergy and conclude that variations of VP can be 3-4 per cent over distances of 4 km in

the upper mantle, or 0.5 per cent over 8 km in the lower mantle. Even if such variations

cannot be maintained over distances comparable to the model grid separation, this does

not bode well for efforts to find objective constraints on model gradients.

It is a fact of life that inversions without smoothing constraints easily degrade into

heavily oscillating tomograms, in which one cannot distinguish the wood from the

trees when searching for larger structures that can be understood in terms of dynamical

processes. Therefore, the damping values that we actually use in the inversion usually

reflect the values that yield the maximum smoothness for the solution while still getting

an acceptable data fit, rather than independent constraints on model parameters or their

derivatives. But generally, prior variances based on physical limitations for the model

are too large to lead to an acceptable posteriori variance. What this is then telling us

is that there is no visually pleasing solution if we strive for a resolution equal to that

allowed by the parametrization.

Unfortunately, many tomographers choose to analyse the resolving power using

the same damping coefficients that led to a lower but acceptable data fit and a lower

variance. However, if we lower K to obtain an acceptable model variance with (2.8),

the resolution matrix loses much of its physical significance, because we bias our model

towards zero. This may lead to meaningless results, e.g. one may damp an ill-resolved

parameter to a value equal or close to zero. This parameter will have a very small

variance, giving the impression we have ‘resolved’ it with a very small posteriori error.

But the actual error in the estimate is large, being governed by the systematic error

introduced by damping – the bias – rather than by random data errors.

The posteriori covariance matrix Cm̂ can also be computed from the singular value

decomposition, using (2.8). Again, it is imperative that we use the full rank N when

doing this. Unresolved parameters will then show up with a variance dominated by the

physics-based prior uncertainty assigned to them in the Bayesian regularization.

Exercise

Exercise 3.1 Someone suggests you can undo the fact that
P

j Rij �= 1 by dividing every m̂i

by
P

j Rij and multiplying the variance by (
P

j Rij)
2. Why would this not work?

3.2 Sensitivity tests
To obtain a quick-and-dirty estimate of the influence of damping on the solution we

can apply sensitivity tests. For very large tomographic systems, such tests are often

the only feasible method for getting some idea of the resolving power without taxing

available computing resources beyond reasonable limits.
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Figure 3.1: Example of a sensitivity test, using a checkerboard of Gaussian spikes with

a width of 400 km, at a depth of 600 km beneath North America. Top: input model

(VP in per cent). Bottom: Result from inversion of the synthetic data generated by the

input model. Figure courtesy Karin Sigloch.

The idea of a sensitivity test is very simple. Suppose we wish to know how a partic-

ular feature of the solution is influenced by the regularization, e.g. a spike-like feature

at a certain depth. We design a model with just this feature, mδ , and compute an ar-

tificial (‘synthetic’) data vector dδ = Amδ . We then invert the data to get a model

estimate, using the same damping parameters we used to obtain the original solution:

m̂ = A−dδ , and we inspect the result by comparing the test output m̂ with the input

mδ . Often, a sharp feature will have spread out horizontally (‘smearing’), or verti-

cally (‘leaking’). By adding random errors with a given distribution (usually Gaussian)

we can study the effect of data errors on the regularized solution. An example of a

sensitivity test is shown in Fig. 3.1.

To save effort, we may combine more than one feature in the synthetic model. As

long as the smeared solutions do not overlap, this will still give us independent esti-

mates of the effects of regularization. If the input features are point-like, we are testing

the regularization effects for a wide spectrum of wavelengths (recall that the Fourier

transform of the delta function is equal to 1). In an effort to study the resolving power
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globally across the model, one often distributes many spikes in a regular pattern, or

uses a checkerboard-like synthetic model of alternating positive and negative anoma-

lies. However, the gain in efficiency is somewhat offset by the fact that the regularity

of the pattern introduces a dominant wavelength into the model. Leveque et al. [13]

warn against a simplistic interpretation of such narrow-band tests. The panacea is to

perform the test for a range of patterns covering a wide band of wavelengths. But the

interpretation is now effectively in the spectral domain, and usually more difficult to

judge than the space domain interpretation of simple spikes.

Note that, by allowing the damping parameters to regularize the solution beyond

what is imposed by objective physical constraints, sensitivity tests are no replacement

for a proper analysis of resolution and variance in the final model. Clearly, both have

their roles in judging the ‘preferred’ model, but one should always keep in mind that

the results of sensitivity tests reflect the influence of the subjective regularization of the

tomographer, whereas those of a true resolution analysis are independent of the choice

of final model.

I conclude this chapter by discussing various other tests that allow one to judge the

reliability of the result or the adequacy of the regularization.

Backprojection of data misfits.

The data misfit vector for the solution m is r = d−Am. A histogram of its elements

should be inspected to check for anomalies far away from a Gaussian distribution. If

there are strong ‘tails’ this may be an indication that outliers are still present in the data

and need to be removed. Once a proper histogram has been obtained with χ2 ≈ N , one

should backproject the residual vector to the model space (AT r) and inspect maps of

backprojected misfits. These should be uncorrelated in space. If they are not randomly

distributed, this may indicate an improper weighting of model parameters (through the

prior covariance matrix Cm used in the regularization) or an imbalance in the spatial

parametrization of the model.

Monte Carlo tests of error propagation

One may generate a data vector consisting of random noise only and invert this to

judge the propagation of data errors. An obvious variant on this is to add the noise to

the original data vector and inspect the variability of the resulting models. Both tests

can be used to get an estimate of the model covariance by repeating them for many

different random outcomes of the data vector. Such ‘Monte Carlo’ experiments need

always be done many times to cover a range of random realizations, but limitations in

the compute power often pose restrictions. E.g., Houser et al. [9] generate 100 global

models in a global tomography experiment.

If we generate K models m(k) in this way, an unbiased estimate of the posteriori

covariance matrix is:

C̃m̂ =
1

K − 1

K∑
k=1

(m(k) − m̄)(m(k) − m̄)T , (3.8)

where T indicates transpose and where m̄ is the average over all K models generated
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this way. For Monte-Carlo tests, a Gaussian error distribution is acceptable provided

one has removed outliers from the data set. Note again that C̃m is only a proper sta-

tistical estimate of covariance if the Monte Carlo inversions are done with objective

damping parameters.

In the absence of more detailed information on the distribution of errors, one usu-

ally assumes that these are normally distributed after the removal of outliers. However,

for bad data with a very low signal to noise ratio (certainly less than 1) one can also

simple scramble the elements of the data vector to obtain a noise vector with a distri-

bution close to the actual distribution.

Cross validation, jackknifing and bootstrapping

Resampling techniques such as cross validation or bootstrapping should only be ap-

plied in seismic tomography with extreme care because they require a strictly overde-

termined system. They must therefore be applied to the damped system and the damp-

ing parameter should, again, reflect true physical information on the range of model

values or its derivatives (model smoothness), rather than the subjective damping that

was applied to obtain a solution that pleases the eye of the geophysicist. However, if

you are lucky enough to have useful prior information, these techniques may help you

get robust estimates of model error and resolution without any prior assumptions about

the distribution of data errors.

In the classical variant of cross-validation, one leaves out one datum, inverts the

data set, then compares how well the omitted datum is predicted. One repeats this for all

or a large number of data and computes the root-mean-square misfit of the predictions.

This allows one to compare different models, or different damping factors.

Clearly, the method is very expensive to apply. A more efficient variant is to remove

a fraction of the data (say 10%) and apply the test to the remaining data, a technique

referred to as ‘jackknifing’. The larger one chooses the fraction, the faster the computa-

tions are performed but the obvious trade-off is that the prediction suffers from the fact

that too many of the data may be missing, and the resulting linear system may not be

fully representative of the complete data set. Bootstrapping is like jackknifing, but the

removed data are replaced by duplicating data randomly selected from the surviving

data set (Efron [6]).

Because of the overdetermined nature of the problem, the data fit also contains

information about the data errors (if most of the misfit is due to data errors and not to

the inadequate nature of the parametrization!), and in fact there are optimum estimators

for the damping parameters that can be obtained this way without first analysing the

data to determine the standard deviations (Golub et al. [8]).

Hypothesis testing

Occasionally one wishes to test whether a particular model arising from a hypothesis,

say mh, satisfies the data. Simply calculating the misfit rh = d−Amh is in this case

not sufficient, because it could be that, even if χ2 for this particular model is too high, a

small adjustment of mh brings χ2 within an acceptable range without invalidating the

hypothesis itself. Deal and Nolet [2] introduced a test to see whether mh is within the
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subspace of models that satisfy the data to an acceptable precision. There are various

ways to do this. The simplest is to simply subtract Amh from the data and invert for

the minimum norm model change to be added to mh that yields an acceptable χ2:

Aδm = d−Amh

m̂ = δm̂ + mh .

For example, Deal et al. [3, 4] invert for a regular tomographic model containing

subduction zones in the west Pacific. To this they fit an analytical model mh of slab

temperature anomalies ΔT , using velocity perturbations δVP = (∂VP /∂T )ΔT . The

procedure is equivalent to adding components of the nullspace of A to the original

solution m̂, and the operator that does this is named the ‘nullspace shuttle’.



Chapter 4

The exercises

4.1 The building blocks
For these experiments you will use Fortran programs and GMT plotting scripts. And,

to read or edit them, you need an editor.

4.1.1 Text editors
To do the experiments, any text editor is suitable provided it does not by itself introduce

non-ASCII characters into your text. If you use one of those, make sure to save your file

as pure ASCII text. Most Unix users prefer to use vi (for visual), since it is available

on every Unix system and since it allows you to make changes throughout the whole

document with a few keystrokes, rather than endless mouse movements. A very simple

alternative editor is pico, which is more intuitive but also more cumbersome than

vi. emacs, available on many Unix systems, has many of the features of vi but a

somewhat steeper learning curve. The following simple introduction to vi is modified

from http://www.unb.ca/csd/documentation/UNIX/tips/editors.html:

The vi editor was designed to run on a wide range of terminals. The key Ctrl-F (hold the

control key while pressing F) will scroll the data one page towards the end, Ctrl-B will scroll one

page back towards the start.

The commands i, I, a, A, o, or O will put you in insert mode. While in insert mode whatever

you type becomes part of your document. You use the ”Escape” or ”ESC” key to get out of

insert mode and back to the ordinary command mode. The ”i” command inserts before the

current cursor position, ”a” after the cursor, ”I” at the start of the line in which the cursor is

located, ”A” at the end of the line, ”o” inserts a new line after the current line, and ”O” inserts a

new line before the current line.

Other common commands:

• vi gmt1 edits file gmt1 (if gmt1 does not exist it will be created)

• Typing ”:” will put you in vi’s ”last line” mode. In this mode you can enter syntactically

complex editor commands on the last line of the display. The last line commands include

things like reading in files to make them part of your document, writing out the current edit

buffer to the original file or a different named file, entering find or substitute commands.

29
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• :q Tells vi to quit. You can code :wq to write the file out then quit. Coding :q! will quit

the edit without saving the changed data.

• the escape key exits you from insert mode. For example, if you want to quit after inserting

text, you need to escape first otherwise the string ”:q” would simply be added to your text.

Use any of the i,I,a,A,o,O,R or C commands to go back into insert mode.

• w Move cursor to start of next word.

• $ Position cursor at end of line.

• 0 Position cursor at start of line.

• 25 Position cursor at start of line 25. G will go to end.

• /Tomo Position cursor at the next occurrence of the string ”Tomo”

• x Delete character at cursor location.

• rc Replace character at cursor location with ”c”.

• cw Replace whatever follows cursor in the current word by what typed following the ”cw”

until the ”escape” key is pressed.

• R Replace text at the current cursor location. The cursor will move as replacement text is

typed until ”escape”.

• C Change from the current cursor location to end of line,

• dd Delete current line. Deleted line placed in paste buffer.

• dw Delete current word from cursor. Text to paste buffer.

• 12d Delete 12 lines from cursor moving to paste buffer.

• p Paste contents of paste buffer at current cursor location. Note that if complete lines are

in paste buffer then complete lines will be pasted after current line, otherwise, the text

will be pasted into the current line. Note that any command which puts text into the paste

buffer will replace the text which was previously there.

• P Paste lines from paste buffer before current line.

• :s/Robert/Michael/ substitutes for the first occurrence of ”Robert” on the current line the

string ”Michael”

• :s/XX/Ctrl-VCrl-M/ replaces ”XX” with a newline metacharacter (hold control key and

V,M resp.)

• :1,$ s/vi/gea/g Tells vi to start at line 1 and continue through to the last line of the buffer

and substitute for any occurrance of the string ”vi” the string ”gea”. The trailing ”g”

which terminates the replacement string tells vi to keep looking for all occurrances of the

search string on each line. Otherwise vi will only replace the first occurrance on each line.

• :w filename Tells vi to write out the current edit buffer to the named file or to the original

file if filename is omitted.

• :set ic tells vi that you want case to be ignored when doing a search. Using /alpha/ will

match ”alpha” or ”AlPhA” or any other variant. :se noic tells vi that you care about case

again.

• :set nu Tells vi to number the lines down the left side. :set nonu Tells vi to turn off

numbering.

• :23,35 m 41 Move lines 23 through 35 after line 41. A dot (.) indicates the current line.

• :54 t 54 Copy line 54 after itself.

• :500,$ d Delete from line 500 to end of document.

• :g/Mary/ s/Johnson/Wood/ change ”Johnson” to ”Wood” throughout the file, but only on

lines containing ”Mary”.
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4.1.2 GMT
The geographical mapping tools (GMT) are widely used in geophysical research. GMT

is a collection of Unix commands that, when used in sequence, write a Postscript plot-

ting file. They come in very handy when plotting of data with or on geographical maps

is needed, but can be used as well for the plotting of non-geographical information,

as we shall do. Man pages exist for every command, e.g.: man pscoast gives the

syntax of the Unix command pscoast. The output of each command needs to be

piped into the postscript file using a >. Sometimes one command is enough to make

the file. For example:

pscoast -JM10 -R0/360/-50/60 -W1p -P > map.ps
gv map.ps

creates a Postscript file map.ps of width 10 cm in Mercator projection (option -JM10),

with longitudes 0-360 and latitudes 50S-60N (option -R0/360/-50/60), a pen width of

1 (-W1p) and in portrait mode (-P). Try it. On my laptop I plot postscript files with

gv which is shorthand for ghostview. Other Unix computers have ghostscript
to plot Postscript files. There are a number of preferences to be set with GMT. In the

example above, I assumed the option -JM10 to give a plot width in cm, but you may set

this to inches. To find out what the defaults are on your system, type: gmtdefaults
-L, and to learn more about the GMT settings: man gmtdefaults. You can change

the defaults with the command gmtset.

To avoid repeated typing, one could put the commands pscoast and gv in a

file (e.g. runcoast and make that executable using the Unix command chmod a+x
runcoast. Then simply typing runcoastwill do the job. The use of short and sim-

ple scripts is recommended as they save lots of work and avoid errors due to mistyping.

To make full use of Unix, a scripting language such as the C shell or the Bourne

shell enhances the use of executable scripts by making them more flexible. Different

shells have slightly different syntax, but in my experience it is enough to know a little

bit of one dialect to be able to read them all. As you get used to them, you may feel

tempted to write longer scripts as well, but as the complexity of the script increases

they become less readable and again prone to errors! That job is best left to computer

science students. Though I do not intend to give a Unix course, nor to replace the GMT

Tutorial, it may be instructive to describe a short GMT script gmtrays that we shall

use later to help you get going:

#! /bin/csh
gmtset PAPER_MEDIA letter+
gmtset ANOT_FONT_SIZE 10 LABEL_FONT_SIZE 10 HEADER_FONT_SIZE 14
gmtset MEASURE_UNIT cm
rm -fr rays.ps
set R = -R0/180/0/300
minmax -M rays.xy
psxy rays.xy -M $R -JX10/-15 -W1p0/0/0 -P -Ba100:X:/a100:Z:eWnS > rays.ps
gv rays.ps

Though the #-sign is normally used in Unix scripts to indicate comments, the #! in-

dicates by convention which Unix shell is used (in this case the C-shell) for the script.
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After the change in defaults settings with gmtset, we remove the old Postscript file

rays.ps (if it exists) with the Unix rm command. We set the limits by storing the

option -R0/180/0/300 by storing it in a variable R. Since this script usually plots

rays between two boreholes 180 m apart that reach to a depth of 300 m, we set to limits

for the horizontal axis to 0-180 and vertical to 0-300.

The command minmax is a GMT command that tells you what the actual limits in

file rays.xy are, so that you have all information to change the script if needed. The

command psxy plots the file rays.xy. The option -JX10/-15 indicates that no

geographical projection should be used (X) that the plot should be 10 cm wide (10) and

15 cm high but with depth increasing downwards (-15). The only other option worth

discussion in some more detail is the -B option which dictates the appearance of the

axes. Here both the horizontal and vertical axis are annotated every 100 m (a100), and

are labeled with a simple letter (X and Z respectively). Only the west (W) and South

(S) axis have a label, the East (e) and North (n) are given in lower case to tell GMT

only to plot tick marks (this terminology obviously comes from the plotting of maps!).

In the psxy command the variable R is preceded by a dollar sign to indicate its value
must be substituted; this is the way Unix treats variables.

We shall look at one more script (gmthist):

#! /bin/csh
if($#argv < 2) then

echo Usage: gmthist filename interval
echo where interval is the bin width for the histogram
if($#argv == 1) then

echo Limits in this file are
minmax $argv[1]

endif
exit

endif
gmtset PAPER_MEDIA letter+
gmtset ANOT_FONT_SIZE 10 LABEL_FONT_SIZE 10 HEADER_FONT_SIZE 14
gmtset MEASURE_UNIT cm
rm -fr hist.ps
echo Limits in file
minmax $argv[1]
pshistogram $argv[1] -JX10 -W$argv[2] -G128 -L1 -P -Z1 -B:sec:/a10f1:Percen
S > hist.ps
gv hist.ps

This script plots histograms and needs to be called with a filename and a bin width

for the histogram. For that reason, we first test if it is called with enough arguments.

If it is less than the required two arguments (i.e. filename and bin width), a message

is returned to the user with instructions how to use the script (the echo command). If

only the filename is given, minmax is used to inform the user what the properties of

the file are, so that an informed decision can be made for the bin width when it is called

again.
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To learn more about pshistogram or other commands and their options, use the

Unix man command. Refer to the GMT tutorial or manual for more general informa-

tion. If you intend to use GMT in your own research, take an afternoon to work through

the tutorial.

4.1.3 Fortran
We generally use the Fortran language for scientific programming. Popular tools such

as Matlab or Excel are not suitable for computing on parallel computers, and tomo-

graphic computations are usually massive enough to make the use of parallel comput-

ing desirable or even necessary (though not in these experiments). Despite the intro-

duction of many other programming languages, Fortran stood the test of time and is

one of the major programming tools for scientists. Subroutines for parallel computing

(e.g. MPI routines - message passing interface) are available in Fortran and C. To di-

gest/plot numerical output from the Fortran programs, it is perfectly fine to use Matlab

or Excel.

For these experiments you do not need to program yourself, since the software has

been pre-written. We use the software as a laboratory instrument. But sometimes you

my wish to tweak even a lab instrument, and if you know a little Fortran, feel free to

modify software if you want to explore something in addition to what is foreseen in

this manual. In that case copy the program to a separate directory so that the original

version remains untouched. After making changes, the following command compiles

your source code into an executable file named program1 - assuming your program

is called program1 and uses separate subroutines stored in subs1.f:

f77 program1.f subs1.f -o program1

4.2 Ray tracing and Fermat’s Principle
We shall first attempt to trace rays through a model, and investigate the change in travel

times when we perturb the ray from its minimum travel time path.

4.2.1 Graph theory in a homogeneous model
Rays in a homogeneous model should be straight lines. But when searching the shortest

path following a set of model nodes, the rays must follow nodal lines. It is as if one

wishes the streets of New York, which form a regular network of NS-oriented avenues

perpendicular to EW-oriented streets, along a diagonal.

Graph theory (We do not have time to explain the details, but see ’A Breviary of

seismic tomography’, chapter 3) is designed to find the shortest path along nodes in a

very efficient way. How one connects models nodes defines how the rays can change

direction. In this experiment we study how the angle discretization imposed by graph

theory affects the tracing of the straight rays. As a by-product we can test the validity

of Fermat’s Principle: the graph-theoretical rays deviate from straight lines, but the

travel time error should be of second order only.
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For this experiment you need:

• the Fortran program graf

• the homogeneous model in file modelzero

• the GMT script gmtray and the model in gmt format modelzero.xy

• the GMT script gmttimes

• an editor such as vi

First copy the files modelzero and modelzero.xy from directory ‘models’ to

your own directory, e.g.:

cp ../models/modelzero .
The two periods indicate ‘parent directory’, the directlry directly above the current

one. Note that the last period (meaning the ‘current directry’) must be typed.

Inspect the file modelzero with the editor. All our model files will have this

structure. The numbers on the first line (20, 30 and 10.) represent the width and depth

of the model in number of cells, and the width of each cell in meters. This is a borehole

experiment, with 300 m deep boreholes forming the left and right edge of the model.

The left borehole has sensors at 5,15,25,...,295 m deep. You can place a source at

any one of these depths in the right borehole, graf then computes the rays to all the

sensors from this source.

Below that, are a list of numbers – on close inspection a list of 30 lines with 20 ×
the number ‘50’. By convention, the number x represents a perturbation of x − 50%

on a background model slowness of 1/5000 s/m (v=5000 m/s). The numbers need not

be separated by spaces or comma’s, since the Fortran code has a statement:

do j=1,nz
read(1,fmt=’(50i2)’) (kslwns(i,j),i=1,nx)

enddo

which means that the program read nz lines of (at most) 50 numbers in ‘i2’ (integer

of length 2) format. In fact, it only reads 20 (nx) numbers and stores these in row i of

array kslwns.

Try first running the Fortran code by typing graf in respnse to the Unix prompt,

and give the input you are being asked for. On my screen I got, for example:

Give model file (e.g. modelzero):
modelzero
Opened: modelzero
dimensions: 20 30, cell size: 10.
slowness model read, n= 600
Minimum slowness: 0.000199999995 (v= 5000. m/s)
Maximum slowness: 0.000199999995 (v= 5000. m/s)
Give depth of source (in rightmost borehole):
45
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If you now type ls, the Unix command to list the contents of the directory, you see

that graf has created new files: an output file out.graf, and two gmt plotting

files, modelzero.rays.xy and modelzero.tt.xy. We shall inspect the ray

geometry first, typing

gmtrays modelzero
If it complains the file with the model may be missing – you can copy the GMT

plotting file for homogeneous model to your own directory with:

cp ../models/modelzero.xy .
Answer the following questions:

1. Which rays are straight, and why do you think these are straight and others not?

2. Inspect the travel time error for these rays by opening file graf.out in an

editor. The graph-theoretical time is in a column headed ‘tgraf’, whereas the

travel time for a homogeneous model with a velocity of 5000 m/s is in column

‘tzero’. Since our model has indeed a background velocity of 5000 m/s, this is

the correct travel time. What do you observe?

3. Inspect the errors for other rays. What is the largest relative error?

4. Why is the average error not close to zero?

5. Assume the dominant frequency of the waves is 250 Hz, and that you can identify

the onset of the arrival with a precision of a quarter of the period. Is the graph-

theoretical error acceptable in view of the precision of the time observations?

6. Run gmttimes to plot the travel time field tt.xy. Does it show what you

would expect?

Confirm your answers by trying a few more depths.

4.2.2 A magma chamber model
Next, we experiment with a model for a magma chamber, in file modelmagma. You

can plot this model by copying the gmt plotfile to modelmagma.xy, the file that is

expected by the GMT script gmtmodel. Or:

cp ../models/modelmagma.xy .
gmtmodel modelmagma

Can you predict what will happen to rays that used to go straight to the region that

now has up to 40% higher slowness?

Run graf on this model and plot the results with gmtrays. Do the rays behave

as expected?

4.3 Designing an experiment, computing the matrix
Although we shall ‘imitate’ the field situation on the computer, many steps we take in

this experiment are fairly realistic for a real set-up of a cross-borehole experiment. The
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only shortcut we take is that we do not fire the shots and measure the travel times from

seismograms. Instead we take a shortcut and obtain our data by computing them from

the model . This is of course cheating because in reality we do not know the model –

if we did there would be no need to do the experiment! But once we have the data, we

completely igore the knowledge of the model, and try instead to invert for it. But that

is for the next section. In this part, we shall try to design an experiment.

The space in between the two boreholes is divided up into cells. The number of

cells in the grid with unknown slowness anomaly is equal to the number of columns in

the matrix. The number of source-geophone pairs is the number of data and therefore

the number of rows. The larger the matrix, the more timeconsuming the inversion will

be. Obviously, many small cells allow us to see more detail than few bigger ones. But

very small cells may be difficult or impossible to resolve, and make the extra computing

time unnecessary.

A similar trade-off exists for the design of the source-geophone array. An opti-

mum coverage requires geophones in both boreholes, but this is expensive. So we opt

for sources at the surface and in the right borehole, and geophones only in the left

borehole, leading to an a-symmetric coverage. In practice there is also an economic

trade-off between the number of sources and sensors, and their quality – often the cost

of mainenance are high and one accepts that a fraction of sources and geophones fails.

The result is that the design of the experiment offers a number of choices with trade-

offs in terms of costs and quality of results. In the remaining experiments we shall

study the image quality one obtains for various choices.

4.3.1 Design of grid and geophone/source configuration

The design of grid and source/sensor configuration is done by means of program mkmatrix,

named such because the configuration determines the matrix. Here is an example of a

run with mkmatrix as it appears on the screen:

% mkmatrix
Give size of cells in m (e.g. 10):
10
nx, nz= 18 30
Total number of cells is 540
Give source/geophone spacing (eg 10):
10
If you give negative percentages for failure,
the program allows you to specify each source
and/or geophone separately.
What percentage of sources fails?
5
What percentage of individual rays fails?
5
Give matrix ident:
test1
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The last entry allows us to identify this particular configuration in subsequent runs that

use the output of mkmatrix. This created a model of 180× 300 m (i.e. boreholes are

300 m deep and 180 m apart). The plotting scripts all assume these dimensions, so if

you wish to double the cell size to 20 m then you must halve the values of nx and nz

if you wish the plot programs to work correctly. The source spacing is the same as the

geophone spacing. We inspect the output file mkmatrix.out. On my machine the

last few lines are:

Nr of working sources: 44 (out of 47)
Nr of working geophones: 29 (out of 30)
Number of data= 1260, parameters= 540

On other machines, numbers may differ because the failure is determined by a machine-

dependent random number generator (which is also why they may differ somewhat

from the 5% specified). Now do the following experiment:

1. Do your own run of mkmatrix. Feel free to vary the numbers but keep the size

of the model equal to 180×300 m.

2. One way to plot the ray coverage is to sum each matrix column, i.e. to compute

the ray density ρi =
∑N

j=1 Aij . Explain why ρi is the total length of rays in cell

i.

3. Plot ρi using the script gmtrayd test1 10 (the arguments are the matrix

ident and the cell size). Explain what you see. How homogeneous is the cover-

age? Can you identify missing sources or geophones?

4. Are there more data than unknowns in your matrix?

5. Do at least one more run with a different cell size (the memory can handle sizes

down to 6 m - note that 6,10,12,15 and 20 m all allow for an integer number of

cells between the boreholes).

6. Do at least one more run with different failure rates for sensors/sources. Be sure

to save the results of new runs with a different identification

Hint: typing cleanup activates a script that trashes all the plotfiles that may clutter

your directory. Typing cleanup all also removes the output from the programs

that compute matrices and eigenvalues, and obviously needs to be called only if you

wish ti start from scratch.

4.3.2 The spectrum of eigenvalues
The more (relatively) large eigenvalues the matrix has, the more constraints the data

impose on the model. It is thus important to inspect the ‘spectrum’ of eigenvalues. To

do so, first compute the eigenvalues and eigenvectors:

% svdtomo
Give matrix ident:
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test1
This matrix has 1260 rows and 540 columns.
progress svdcmp:
Householder: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
LH transforms:yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
RH transforms:zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
Diagonalize: ............................................................

The progress of the program is followed on screen – useful especially for slow runs

with small cell sizes. All eigenvalues are listed in the file svdtomo.out, but it is

faster to inspect them graphically:

gmteigenvalues test1

In this plot, the largest eigenvalue is scaled to 1. Since the standard deviation of the

resulting model parameters scales inversly with λ, the smallest eigenvalues have a con-

tribution to the error that is out of proportion. To investigate this, inspect the tail end of

the eigenvalue distribution (in svdtomo.out) for the configurations designed in the

previous task, and compare. Select the configuration that seems to have the most eigen-

values above some useful threshold (i.e. 0.2 times the maximum) for the experiments

in the next section.

4.3.3 The eigenvectors
The larger an eigenvalue, the more precisely the contribution of the corresponding

eigenvector is constrained by the model. It is thus of interest to inspect what the eigen-

vectors ‘look like’ in different parts of the eigenvalue spectrum. You can create plot-

table files using program plotvector. Here is an example:

% plotvector
Give eigenvector file ident:
test1
m,n,nx,nz,h= 1260 540 18 30 10.

Eigenvalues:
1 354.793983
2 261.907887
3 234.647438
4 214.070391
5 209.264056
100 78.1680816
200 57.8295911
300 38.5710624
400 13.5071891
500 2.45769526
Give eigenvector nr (stop on 0): 1
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Give eigenvector nr (stop on 0): 2
Give eigenvector nr (stop on 0): 3
Give eigenvector nr (stop on 0): 500
Give eigenvector nr (stop on 0): 0

Which results in files named eigv001.xy, eigv002.xy etc. Typing gmteigv 001 10
will plot the first eigenvector, etc. Do the following:

1. Create a selection of eigenvector files in this way, be sure to include 1,2,3 and

500 and a few others,

2. Inspect the plots of vectors belonging to large eigenvalues. How would you

describe them? Can you explain some of their characteristics in a general way?

3. Similarly, how do the eigenvectors for small eigenvalues (or zero!) differ from

the first few? Can you give a qualitative explanation for what you observe?

4.4 The inverse problem

4.4.1 Generating data
We don’t have to go out into the field to get useful data: since we can create models,

and we know the linear relationship between the data vector d and the model m is

linear: d = Am, we can use the matrix A to generate artificial data for that model.

This is sometimes called ‘solving the forward problem’. This strategy has the added

advantage that we can compare the result of an inversion with the model we used to

create d. Program mkmodel generates such (error-free) data for you configuration for
a specified model of heterogeneity. Here we shall first test if we can image the magma

model. Using the configuration in test1, I get:

% mkmodel
Give matrix ident:

test1
nr of data= 1260, nr of parameters= 540
mdim, ndim= 1600 1500
nx,nz,h= 18 30 10.
a has been read
Give model file name (e.g. modelzero):

modelmagma
model has nnx,nnz= 18 30
model has been read

This creates a file with synthetic ‘data’ (delay times with respect to a homogeneous

model with a background velocity of 5 km/s): delays0.test1.modelmagma. A

histogram of the data can be produced with GMT: gmthist delays0.test1.modelmagma
0.0002 (the 0.0002 is the interval width for the histogram).

Do the following experiment:
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1. Run mkmodel on the magma chamber model

2. Inspect the histogram for the range of (still exact) delay times generated by the

slow magma anomaly.

3. Next, make the experiment more realistic by adding observational errors to the

delay time. This is done by running program adderr, which adds errors with

a Gaussian distribution to the original delays and creates a new data file. For

example:

% adderr
Give matrix ident:
test1
Give standard deviation for data errors (eg 0.0001):
0.0001
Give integer for random seed (eg 29456):
25637
Give filename for new data:
delays1
Total nr of data= 1261

The random seed number can be used to generate different sequences of random

errors, useful if you wish to generate models with different realizations of the

random errors.

4. inspect the histogram of the new data. As always, ask yourself questions and try

to explain what you see.

4.4.2 Solving for a model
This is done using program svdsolve. Though the program allows both for a sharp

and a tapered cut-off of the eigenvalues (equations 4.7 and 4.18, respectively), for

the experiment we shall limit ourselves to the sharp cut-off case. When you start the

program, it lists some of the eigenvalues, as well as the (rms) average standard deviation

for the model parameters if the cut-off occurs at that level:

svdsolve
Give matrix ident:
test1
Matrix has 1234 rows and 540 columns
Now opening eigv.test1
Give data file name (e.g. delays0.xxxx):
delays1
Data standard deviation: 9.99999975E-05
Now computing AˆT d
Now computing VˆT AˆT d
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RMS model error as function of cut-off:
i w sigrms
1 353.61 0.0000000
2 259.80 0.0000000
3 235.88 0.0000000

The sigma’s are for the absolute slowness variations (with respect to the background

slowness of 0.0002 s/m). More important is to monitor the value of χ2 when you do

inversions for different cut-off levels K. For example:

Tapered [0] or sharp [1] eigenvalue cut-off?
1
Give rank k (or 0 to stop):

100
Give ident for this solution:

s100
Model GMT file is in sol.s100.xy
Error GMT file is in sig.s100.xy
Data fit GMT file is in dif.s100.xy

Chiˆ2= 2391.9, relative Chiˆ2= 1.9383

Give rank k (or 0 to stop):
400
Give ident for this solution:

s400
Model GMT file is in sol.s400.xy
Error GMT file is in sig.s400.xy
Data fit GMT file is in dif.s400.xy

Chiˆ2= 806.1, relative Chiˆ2= 0.6533

shows that the optimum relative χ2 of 1 is somewhere between the cut-off levels of 100

and 400 eigenvalues. The two models so created are in files sol.s100.xy and sol.s400.xy

and can be plotted with GMT, eg gmtmodel sol.100 10, where 10 is the cell size

as usual.

1. Find the optimum model with χ2 close to 1

2. Plot this model

3. invert the error free data also with this cut-off level and compare the two solu-

tions,

4. Investigate for what K the model errors start to ‘blow up’
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4.5 Sensitivity analysis
We do the sensitivity analysis by inverting for checkerboard patterns. To this end,

directory MODELS contains checkerboard patterns of different size: model2chess,

model4chess and model6chess.

1. Generate error-free data for these models using mkmodel

2. Invert the error-free data using the cut-off K that you found with the previous

experiment. Which regions of the model are very well resolved? Is there a limit

to the wavelengths that can be resolved?

3. Add errors to the data. Which regions show the largest effects of errors?
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