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I. Excitation of seismic waves 
 

The description of seismic source we will consider is based on the formalism developed 
by Backus and Mulcahy, 1976. 
 
Statement of the problem.  
Motion equation 
ρ σ&& ,u i i j j= + f i          (1.1) 
Hook’s law for isotropic medium 

ijkkijij μεελδσ 2+=         (1.2)   
Initial conditions 
& ,u u≡ ≡ <0 t 0          (1.3) 

Boundary conditions 
0|

0
=Sjij nσ          (1.4) 

Here u – displacement vector; σij – elements of symmetric 3x3 stress tensor; i,j=1,2,3 and the 

summation convention for repeated subscripts is used; ∑
= ∂

∂
=

3

1
,

j j

ij
jij x

σ
σ  ; εij – elements of 

symmetric 3x3 strain tensor and )(5.0 ,, ijjiij uu +=ε ;  ρ - density; fi – components of 
external force; nj – components of the normal to the free surface S0.  
 
Solution of the problem (1.1)-(1.4) can be given by formula 

yjij

T

i dVftGdtu ),(),,(),(
0

τττ yyxx ∫∫
Ω

−=       (1.5) 

or 

u t d H t f dVi

T

ij j y( , ) ( , , ) & ( , )x x y y= −∫ ∫τ τ
0 Ω

τ

d

      (1.6) 

Here  Gij is the Green’s function,  

H t Gij ij

t

( , , ) ( , , )x y x y= ∫ τ τ
0

,         (1.7) 

x ∈ Ω and 0 < t < T are the space region and time interval where  is not identically zero. &f
 

Internal sources of seismic disturbances  
 We will consider internal sources only (earthquakes). In this case any external forces 
are absent. We must then set 0≡f in equation (1.1), so that the only solution that satisfies 
the homogeneous initial (1.3) and boundary (1.4) conditions, as well as Hook’s law (1.2) will 
be .  Non-zero displacements cannot arise in the medium, unless at least one of the 
above conditions is not true. 

0≡u

Following Backus and Mulcahy, 1976, we assume seismic motion to be caused by a departure 
from ideal elasticity (from Hook’s law) within some volume of the medium Ω at some time 
interval 0 < t < T. 

Let u(x,t) be the actual displacements, σ(x,t) - correspondent stresses, if Hook’s law is 
valid, s(x,t) - actual stresses. 
Let the difference  
Γ(x,t) = σ(x,t) - s(x,t),         (1.8) 
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called the stress glut tensor or moment tensor density, is not identically zero for 0 < t < T  and 
x ∈ Ω.  
Τ  we define as source duration, and Ω - source region. Within this region and time interval 
(and only there) the tensor is not identically zero as well. ),( txΓ&

Replacing σ(x,t) by s(x,t) in equation (1.1), using definition (1.8) and the absence of 
external forces ( 0≡f ) we can rewrite the motion equation (1.1) in form 
ρ && ,u si i j= j  
or 
ρ σ&& ,u i i j j= + g i

i j j

τ

τ Σ

         (1.9) 
where 
g i = − Γ ,  .         (1.10) 

 
Equation (1.10) defines the equivalent force g.  Using formula (1.6) with fi replaced by gi , 
definition (1.10) and Gauss theorem we have for displacements 

u t d H t dVi

T

ij k jk y( , ) ( , , )& ( , ),x x y y= −∫ ∫τ τ
0 Ω

Γ ,      (1.11) 

where Hij  is differentiated with respect to yk . 
If the inelastic motions are concentrated at a surface Σ, then 

u t d H t di

T

ij k jk y( , ) ( , , )& ( , ),x x y y= −∫ ∫τ τ
0 Σ

Γ .      (1.12) 

 
Relation of stress glut (moment tensor density) with classic definition of moment tensor M : 

y

T

dVtdt∫∫
Ω

= ),(
0

yΓM &  .        (1.13) 

Normalizing moment tensor we define seismic moment M0 :  

M=M0m , where tensor m is normalized by condition , m∑
=

==
3

1,

2T 2)tr(
ji

ijmmm T is transposed 

tensor m.  
 

If the source is localized in a point x0 then  )()(),( 0xxx −Γ=Γ δtt ijij  and equivalent forces gi 
take view of dipoles or couples: 

j
iji x

tg
∂

−∂
Γ−=

)()( 0xxδ .         

 
Stress glut tensor for special types of seismic sources 
1. Discontinuity of displacement Δu at a surface Σ  in isotropic medium (stress is continuous): 

)].,()(),()([
)(),(),(

tuntun
ntut

ijji

ijkkij

xxxx
xxx

Δ+Δ+

Δ=Γ

μ

δλ
     (1.14) 

Here n(x) is the normal to the surface Σ, and seismic disturbances are given by formula 
(1.12). 
2. In the case of tangential (shear) dislocation we have 

0≡Δ kk nu and formula (1.14) takes form 
)].,()(),()([),( tuntunt ijjiij xxxxx Δ+Δ=Γ μ     (1.15) 
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3. Instant point centrum of expansion (ideal explosion)  
located in x = 0 at t = 0: 

     )()(3
2),( 0 xx δδδ tMt ijij =Γ& , where    M0  is the seismic moment.  

4. Instant point tangential dislocation (double-couple) occurred in the point x=0 at time t=0: 
),()(),( 0 xx δδ tmMt ijij =Γ&        (1.16) 

where ijjiij ananm +=  , a u= uΔ Δ/| |  and  .||0 uΔ= μM  
If Δu(x, t) is not an instant slip localized in a point but it is distributed in a plane area and 
in time, then we have 

,|),(|0 ΣΔ= ∫
Σ

dTM xuμ  ,0 ijij mMM =

where Δu(x, T) is the final distribution of slip, and T is  
the source duration. 

As it follows from formula (1.12) an instant point double-couple excites a 
displacement field of the form 

klliki mtHMtu ),,(),( ,0 0xx = .        (1.17) 
We have for Fourier transforms H(x,y,ω) and G(x,y,ω) from equation (1.7): 

ω),,(
iω
1ω),,( yxGyxH = ,        (1.18) 

where i is the imaginary unit, and ω is angular frequency. 
As result the spectrum of displacements is given by formula 

ω),,(
iω
1ω),( ,0 0xx likkli GmMu = .       (1.19) 

Main phenomena of double-couple. 
- Matrix m has zero trace.  
- The eigenvalues of matrix m are: 1, -1 and 0. The eigenvector correspondent to 1 

defines the direction of maximum extension, and the eigenvector correspondent to -1 
defines the direction of maximum compression.  

- As far as radiation pattern of seismic waves is concerned and double-couple is 
considered to be an instant point source we can interchange vectors n and a (or 
equivalently, the fault plane and supplementary plane which is orthogonal to a). 

Double couple specifications 
- Double couple is completely defined by moment tensor’s elements. 
- Double couple can be given by seismic moment and by Cartesian coordinates of two        

vectors: the normal to the fault plane n and a unit vector in the direction of slip a. 
- We can also specify the double couple by seismic moment and focal mechanism 

defined by the fault strike ψ, dip δ and rake λ angles. Sometimes rake is called slip 
angle. 

Definition of focal mechanism angles 
Strike - the angle (0° < ψ < 360°) between North and the trace of the fault on a horizontal 
plane. It is measured positively clockwise from North with the fault dipping to the right. 
Dip - the angle (0° < δ < 90°) the fault plane makes with a horizontal plane.  
Rake - the angle (-180° < λ < 180°) between the strike axis and slip vector (the shift of the 
hanging wall relative to the footwall). It is measured positively counterclockwise from the 
strike axis.  
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 Relation between the displacement field and stress glut moments 
 We assume that following product can represent the time derivative of stress glut tensor: 

mxx ),(),( tft =Γ& ,         (1.20) 
where  is non-negative function and m is a uniform normalized moment tensor.  f t( , )x
The moment  of spatial degree l and temporal degree n with respect to point q and 
instant of time τ is a tensor of order l and is given by formula 

),(),(
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τqnl
kk l
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∫∫
∞

τ−−⋅⋅⋅−=τ
0
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... ))(())(,(),(
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dttqxqxtfdVf n

kkkk
V
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kk lll

xq ,    (1.21) 

k1,…,kl=1,2,3. 
Replacing Hij(x,y,t-τ) in equation (1.11) by its Taylor series in powers of y and in powers of 
τ, we get: 
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Using formulae (1.18) and (1.22) we have following equation for the spectrum of 
displacements: 

0yyx0x =
−

∞

=

∞

= ∂
∂

∂
∂

⋅⋅⋅
∂
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= ∑∑ ω),,(ω))(i0,(

!!
)1(ω),(

1

1

1),(
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0 0
ij

kkk

nnl
kk

l n
jk

n

i Gfm
nl

u
l

l yyy
.  (1.23) 

Here we assume that the point y = 0 and the instant t = 0 belong to the source region and the 
time of the source activity respectively. 
 When the spectra of displacements ui(x,ω) and Green’s function Gij(x,y,ω) have been 
low pass filtered, the terms in equation (1.23) start to decrease with l and n increasing at least 
as rapidly as (ωT)l+n  (T is the source duration, and ωT<1), and one might then restrict to 
considering finite sums only. 
 We will take into account in the following sections only the first terms in formula 
(1.23) for . 2≤+ nl
 
II. Source inversion in moment tensor approximation 
 
The first term in (1.23) corresponding to l = 0, n = 0, describes the spectra of displacements 
ui(x,ω) excited by an instant point source (compare with formula (1.19) taking into account 
that seismic moment is equal to zero moment of function f(x,t):  M0 = f (0,0)). For a source with 
nonzero size and duration this term approximates ui(x,ω) with high accuracy for  periods 
much longer then source duration. Performing the inversion of long period seismic waves we 
describe the earthquake by an instant point source. As it was mentioned in previous section, 
an instant point source can be given by moment tensor - a symmetric 3x3 matrix M . Seismic 

moment  is defined by equation M0 M0
1

2= tr( )TM M , where M  is transposed moment 

tensor , and .  Moment tensor of any event can be presented in the 

form  M , where matrix m  is normalized by condition . 

T

M tr( )T

,
M M =

=
∑ Mij
i j

2

1

3

m= M0 tr( )Tm m = 2
We’ll consider a double-couple instant point source (a pure tangential dislocation) at a 

depth h. Such a source can be given by 5 parameters: double-couple depth, its focal 
mechanism which is characterizing by three angles: strike, dip and slip or by two unit vectors 
(direction of principal tension T and direction of principal compression P) and seismic 
moment . Four of these parameters we determine by a systematic exploration of the four M0
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dimensional parametric space, and the 5-th parameter  - solving the problem of 
minimization of the misfit between observed and calculated surface wave amplitude spectra 
for every current combination of all other parameters. 

M0

Under assumptions mentioned above the relation between the spectrum of displacements 
 and moment tensor M  can be expressed by formula (1.19) rewritten below in 

slightly different form:  
ui ( , )x ω

)],,([
i
1),( ω

∂
∂

ω
=ω yxx ij

l
jli GMu

y
                               (2.1) 

i,j = 1,2,3 and the  summation  convention for repeated subscripts is used. Gij ( , , )x y ω  in 
equation (2.1) is the spectrum of Green function for the chosen model of medium and wave 
type (see Levshin, 1985; Bukchin, 1990), y - source location. We will discuss the inversion of 
surface wave spectra, so Gij ( , , )x y ω is the spectrum of surface wave Green function. We 
assume that the paths from the earthquake source to seismic stations are relatively simple and 
are well approximated by weak laterally inhomogeneous model (Woodhouse, 1974; Babich et 
al., 1976). The surface wave Green function in this approximation is determined by the near 
source and near receiver velocity structure, by the mean phase velocity of wave, and by 
geometrical spreading. We assume that waves propagate from the source to station along 
great circles. Under these assumptions the amplitude spectrum | | defined by formula 
(2.1) does not depend on the average phase velocity of the wave. In such a model the errors in 
source location do not affect the amplitude spectrum (Bukchin, 1990). The average phase 
velocities of surface waves are usually not well known. For this reason as a rule we use only 
amplitude spectra of surface waves for determining source parameters under consideration. 
We use observed surface wave phase spectra only for very long periods. Correcting the 
spectra for attenuation we use laterally homogeneous model for quality factor.  

ui ( , )x ω

 
Surface wave amplitude spectra inversion 
     If all characteristics of the medium are known, the representation (2.1) gives us a system of 
equations for parameters defined above. Let us consider now a grid in the space of these 4 
parameters. Let the models of the media be given. Using formula (2.1)  we  can  calculate  the  
amplitude spectra of surface waves at the points of  observation for every possible 
combination of values of the varying  parameters.  Comparison of calculated and observed 
amplitude spectra give us a residual for every point of observation, every wave and every 
frequency . Let  be any observed value of the spectrum, i = 1,…,N; -   

corresponding residual of | |. We define the normalized amplitude residual by 
formula  

ε ( )i

ω u i( ) ( , )x ω ε amp
( )i

u i( ) ( , )x ω

2/1N

1

2
N

1

2
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⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ ω|⎟
⎠

⎞
⎜
⎝

⎛ ε=,(ε ∑∑
=

)(

=

)(

i

i

i

uh
i

xPT .  (2.2) 

 
The optimal values of the parameters that minimize εamp we consider as estimates of these 
parameters. We search them by a systematic exploration of the four-dimensional parameter 
space. To characterize the degree of resolution of every of these source characteristics we 
calculate partial residual functions. Fixing the value of one of varying parameters we put in 
correspondence to it a minimal value of the residual εamp on the set of all possible values of 
the other parameters. In this way we define one residual function on scalar argument and two 
residual functions on vector argument corresponding to the scalar and two vector varying 
parameters: , and ε (h h ) ε (T T ) ε (P P ) . The value of the parameter for which the 
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corresponding function of the residual attains its minimum we define as estimate of this 
parameter. At the same time these functions characterize the degree of resolution of the 
corresponding parameters. From geometrical point of view these functions describe the lower 
boundaries of projections of the 4-D surface of functional ε on the coordinate planes. A 
sketch illustrating the definition of partial residual functions is given in figure 1.  
Here one of 4 parameters is picked out as ‘parameter 1’, and one of coordinate axis 
corresponds to this parameter. Another coordinate axis we consider formally as 3-D space of 
the rest 3 parameters. Plane Σ is orthogonal to the axis ‘parameter 1’ and cross it in a point p0. 
Curve L is the intersection of the plane Σ and the surface of functional ε. As one can see from 
the figure the point ε1(p0) belong to the boundary of projection of the surface of functional 
ε, and at the same time it corresponds to a minimal value of the residual ε on the set of all 
possible values of the other 3 parameters while ‘parameter 1’ is equal to the value p0. 
So, as it is accepted in engineering we characterize our surface by its 4 projections on 
coordinate planes. 
 
 

 
 
    It is well known that the focal mechanism cannot be uniquely determined from surface 
wave amplitude spectra. There are four different focal mechanisms radiating the same surface 
wave amplitude spectra. These four equivalent solutions represent two pairs of mechanisms 
symmetric with respect to the vertical axis, and within the pair differ from each other by the 
opposite direction of slip.  
     To get a unique solution for the focal mechanism we have to use in the inversion additional 
observations. For these purpose we use very long period phase spectra of surface waves or 
polarities of P wave first arrivals. 
 
Joint inversion of surface wave amplitude and phase spectra 
   Using  formula (2.1) we can calculate for chosen frequency range the phase spectra of 
surface waves at the points of observation for every possible combination of values of the 
varying  parameters. Comparison of calculated and observed phase spectra give us a residual 
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ε ph

( )i

for every point of observation, every wave and every frequency . We define the 
normalized phase residual by formula  

ω

ε ( ϕ , ε
( )

p h p hh
i

i
, , ) / N

N /

T P =
⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥

=
∑1 2

1

1 2

π
.      (2.3) 

 
We determine the joint residual ε by formula 
ε ε ε= − − −1 1 1( ) (p h a m p ) .        (2.4) 
To characterize the resolution of source characteristics we calculate partial residual functions 
in the same way as was described above. 
 
Joint inversion of surface wave amplitude spectra and P wave polarities 

Calculating radiation pattern of P waves for every current combination of parameters we 
compare it with observed polarities. The misfit obtained from this comparison we use to 
calculate a joint residual of surface wave amplitude spectra and polarities of P wave first 
arrivals. Let be the residual of surface wave amplitude spectra, - the residual of P 
wave first arrival polarities (the number of wrong polarities divided by the full number of 
observed polarities), then we determine the joint residual 

ε a m p ε p

ε by formula 
ε ε ε= − − −1 1 1( ) (p a m )p

− +

.       (2.5) 
For this type of inversion we calculate partial residual functions to characterize the resolution 
of parameters under determination in the same way as it was described for two first types. 

Before inversion we apply to observed polarities a smoothing procedure (see Lasserre et 
al., 2001), which we will describe here briefly. 

Let us consider a group of observed polarities (+1 for compression and -1 for dilatation) 
radiated in directions deviating from any medium one by a small angle. This group is 
presented in the inversion procedure by one polarity prescribing to this medium direction. If 
the number of one of two types of polarities from this group is significantly larger then the 
number of opposite polarities, then we prescribe this polarity to this medium direction. If no 
one of two polarity types can be considered as preferable, then all these polarities will not be 
used in the inversion. To make a decision for any group of n observed polarities we calculate 
the sum , where nm n n= −+ + is the number of compressions and  is the number 
of dilatations. We consider one of polarity types as preferable if |m| is larger then its standard 
deviation in the case when +1 and -1 appear randomly with this same probability 0.5. In this 
case n

n n n− = −

+ is a random value distributed following the binomial low. For its average we have 
, and for dispersion M n n( ) .+ = 05 D n n( ) .+ = 0 25 . Random value m is a linear function of n+ 

such that m n= n−+2 . So following equations are valid for the average, for the dispersion, 
and for the standard deviation σ of value m  
M m M n n n n( ) ( )= − = − =+2 0 ,   D m D n n( ) ( )= =+4 ,   and  σ( )m n= . 

As a result, if the inequality | m|≥ n  is valid then we prescribe +1 to the medium direction if 
, and -1 if m > 0 m < 0 . 

  
Example of application 
We illustrate the technique by results of its application for a study of large Tarapaca 
earthquakes in Chile, Mw = 7.8 occurred on 13 June 2005. To estimate the best double-couple 
we have used spectra of fundamental Love and Rayleigh modes in spectral range from 160 to 
250 seconds. The records were processed by frequency-time and polarization analysis 
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package. We selected 11 Love wave records and 14 Rayleigh wave records from IRIS and 
GEOSCOPE stations. Their distribution of stations is given in figure 2.  

 
The solution gives a mechanism described by the following values of strike, dip and slip for 
two nodal planes: P1: 192˚, 22˚, -64˚;   P2: 345˚, 70˚, -100˚. The stereographic projection of 
this focal mechanism is given in figure 3 with first arrival polarities superimposed. The 
estimated value of seismic moment is 0.54·1021 N·m. The estimate of source depth is equal to 
80 km. The resolution of the source depth is illustrated by the residual curve given in figure 4. 
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The resolution of the focal mechanism is illustrated by the residual maps and 
 given in figure 5. 

ε (T T )
ε (P P )
 

 
  

III. Second moments approximation. Characteristics of source shape and evolution in 
time. 
 
     We present here a technique based on the description of seismic source distribution in 
space and in time by integral moments (see Bukchin et al., 1994; Bukchin, 1995; Gomez, 
1997 a, b). We assume that the time derivative of stress glut tensor can be represented in 
form (1.20). Following Backus and Mulcahy, 1976 we will define the source region by the 
condition that function  is not identically zero and the source duration is the time 
during which nonelastic motion occurs at various points within the source region, i.e.,  
is different from zero. 

&Γ

f t( , )x
f t( , )x

     Spatial and temporal integral characteristics of the source can be expressed by 
corresponding moments of the function  (Backus, 1977a; Bukchin et al., 1994). These 
moments can be estimated from the seismic records using the relation between them and the 
displacements in seismic waves, which we will consider later. In general case stress glut rate 
moments of spatial degree 2 and higher are not uniquely determined by the displacement field 
(Pavlov, 1994; Das & Kostrov, 1997). But in the case when equation (1.20) is valid such 
uniqueness takes place (Backus, 1977b; Bukchin, 1995). 

f t( , )x

    Following equations define the spatio-temporal moments of function of total degree 
(both in space and time) 0, 1, and 2 with respect to point q and instant of time τ. 

f t( , )x
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f dV f t d
V
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i i
( , ) ( ) ( , )( )1 0
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q x= −∫ ∫
∞

V

( , ) ( ) ( , )( )0 1
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V
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∞
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dtτ−

dt−

t ,    , 

,   ,
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f dV f t t dt

f dV f t x q ti
V

i i
( , ) ( , ) ( , )( )( )1 1

0

q xτ = −∫ ∫
∞

  f dV f t x q x qij
V

i i j j
( , ) ( ) ( , )( )( )2 0

0

q x= −∫ ∫
∞

     Using these moments we will define integral characteristics of the source. Source location 
is estimated by the spatial centroid q  of the field  defined as c f t( , )x
q f 0c

( ) ( ) /= 1 0
0

, M  ,           (3.2) 
where  is the scalar seismic moment. M f0

0 0= ( , )

Similarly, the temporal centroid τ c  is estimated by the formula 
τ c

( ) ( ) /= f ,0 1
00 M  .                                    (3.3) 

The source duration is estimated by Δ t 2 Δ τ , where 
( τ2Δτ) = f ,( )

c( ) /0 2
0M  .                                 (3.4) 

The spatial extent of the source is described by matrix W, 
W f q= ( )

c( ) /2 0
0

, M  .                                   (3.5) 
The mean source size in the direction of unit vector r is estimated by value , defined by 
formula 

2lr

lr
2 = r WrT ,                                           (3.6) 

where is the transposed vector. From (3.5) and (3.6) we can estimate the principal axes of 
the source. There directions are given by the eigenvectors of the matrix W, and the lengths are 
defined by correspondent eigenvalues: the length of the minor semi-axis is equal to the least 
eigenvalue, and the length of the major semi-axis is equal to the greatest eigenvalue. 

r T

     In the same way, from the coupled space time moment of order (1,1) the mean velocity v 
of the instant spatial centroid (Bukchin, 1989) is estimated as 
v w= / ( 2Δτ)  ,                                        (3.7) 
where   . w f q= ( )

c c( , ) /1 1
0

, Mτ
     The relation between integral estimates and real characteristics of source duration and 
spatial extent depends on the distribution of moment rate density in time and over the fault. 
Figure 6 illustrates this relation in the case of Gaussian distributions. In this case 99% 
confidence duration is 2.5 times larger then the integral estimate, and 99% confidence axis 
length is 3 times larger then correspondent integral estimate.  
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Fig. 6. Relation between integral estimates and real characteristics of source duration and 
spatial extent. 
 
       Now we will consider the low frequency part of the spectra of the ith component of 
displacements in Love or Rayleigh wave ui ( , )x ω . It is assumed that the frequency ω  is 
small, so that the duration of the source is small in comparison with the period of the wave, 
and the source size is small as compared with the wavelength. It is assumed that the origin of 
coordinate system is located in the point of spatial centroid (i.e. ) and that time is 
measured from the instant of temporal centroid, so that 

qc qc = 0
τ c = 0 . With this choice the first 

degree moments with respect to the spatial origin x = 0 and to the temporal origin t = 0 are 
zero, i.e. f 0  and .  0( ) ( )1 0, = f ,( ) ( )0 1 0 0=
      Under this assumptions, taking into account in formula (1.23) only the first terms for 

 we can express the relation between the spectrum of displacements u  and the 
spatio-temporal moments of the function by following formula (Bukchin,1995) 

2≤+ nl i ( , )x ω
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u M M G f M Gi jl
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ij mn jl
m n l
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+ x 0

∂
∂

∂
∂

∂
∂

1 1
20
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y y y y
 

−
∂

∂
∂

∂
+

∂
∂

f M G f M Gm jl
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ij jl
l

ij
( , ) ( , )( , ) ( , , )

i
( ) ( , , )1 1 0 20
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00 x 0

y y y
ω x 0

ω
ω ,    (3.8) 

i,j,l,m,n = 1,2,3 and the  summation  convention for repeated subscripts is used.  Gij ( , , )x y ω  
in equation (3.8) is the spectrum of Green function for the chosen model of medium and wave 
type. We assume that the paths from the earthquake source to seismic stations are well 
approximated by weak laterally inhomogeneous model. Under this assumption, as it was 
mentioned above, the amplitude spectrum | ui ( , )x ω | defined by formula (3.8) does not depend 
on the average phase velocity of the wave, and the errors in source location do not affect the 
amplitude spectrum. 
     If all characteristics of the medium, depth of the best point source and seismic moment 
tensor are known (determined, for example, using the spectral domain of longer periods) the 
representation (3.8) gives us a system of linear equations for moments of the function 

of total degree 2. But as we mentioned considering moment tensor approximation the 
average phase velocities of surface waves are usually not well known. For this reason, we use 
only amplitude spectrum of surface waves for determining these moments, in spite of non-
linear relation between them. 

f t( , )x
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     Let us consider a plane source. All moments of the function of total degree 2 can be 
expressed in this case by formulas (3.2)-(3.7) in terms of 6 parameters: - estimate of 
source duration, l

f t( , )x
Δ t

max - estimate of maximal mean size of the source,  ϕl - estimate  of  the 
angle between the direction  of maximal size and strike axis, lmin - estimate of minimal mean 
size of the source, v - estimate of the absolute value of instant centroid mean velocity v and ϕv 
-  the angle between v and strike axis. 
     Using the Bessel inequality for the moments under discussion we can obtain the following 
constrain for the parameters considered above (Bukchin, 1995): 

1sincos
2
min

2

2
max

2
22 ≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ ϕ
+

ϕ
Δ

ll
tv ,                             (3.9) 

where ϕ is the angle between major axis of the source and direction of v. 
Assuming that the source is a plane fault and representation (1.20) is valid let us consider a 
rough grid in the space of 6 parameters defined above. These parameters have to follow 
inequality (3.9). Let models of the media be given and the moment tensor be fixed as well as 
the depth of the best point source. Let the fault plane (one of two nodal planes) be identified. 
Using  formula (3.8)  we  can  calculate  the  amplitude spectra of surface waves at the points 
of observation for every possible combination of values of the varying  parameters. 
Comparison of calculated and observed amplitude spectra give us a residual ε for every 
point of observation, every wave and every frequency 

( )i

ω . Let  be any observed 
value of the spectrum, i = 1,…,N; - corresponding residual of | |. We define the 
normalized amplitude residual by formula  

u i( ) ( , )r ω
ε ( )i u i( ) ( , )r ω

2/1N

1

2
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1

2
minmax |,(),,,, ⎥

⎦
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⎢
⎣
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⎟
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⎞
⎜
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⎛
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⎜
⎝

⎛
ε=ϕ,ϕΔε( ∑∑

=

)(

=

)(

i

i

i

i
l ullt rvv .  (3.10) 

The optimal values of the parameters that minimize ε we consider as estimates of these 
parameters. We search them by a systematic exploration of the six dimensional parameter 
space. To characterize the degree of resolution of every of these source characteristics we 
calculate partial residual functions in the same way as was described in previous section. We 
define 6 functions of the residual corresponding to the 6 varying parameters: ε (Δ Δt t ) , 

, , ε (l l
m a x m a x ) ε (l l

m in m in ) ε ( ϕϕ l l ) , )vv (ε and )vv
(ϕε ϕ . The value of the parameter 

for which the corresponding function of the residual attains its minimum we define as 
estimate of this parameter. At the same time these functions characterize the degree of 
resolution of the corresponding parameters.  
 
Example of application 
We illustrate the technique by results of its application for a study of largest earthquake in the 
last four decades: Sumatra-Andaman earthquake occurred on 26 December 2004.  
To estimate the best double-couple, duration and geometry of the source we have used 
amplitude spectra of second and third orbits of fundamental Love and Rayleigh modes in 
spectral range from 500 to 650 seconds. The records were processed by frequency-time and 
polarization analysis package. We selected 24 Love wave records and 22 Rayleigh wave 
records from IRIS and GEOSCOPE stations. Their azimuthal distribution is given in figure 7.  
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Fig. 7 Azimuthal distribution of radiation of waves used for inversion. 
L and R after the name of station denotes Love and Rayleigh wave correspondingly. 

 
In the source region and under the receivers, we used the 3SMAC model (Ricard et al. 1996) 
for the crust and the PREM model below. We used the quality factor given by the PREM 
model for attenuation correction. The moment tensor describing the source in instant point 
source approximation is obtained by joint inversion of surface wave amplitude spectra and 
first arrival polarities at worldwide stations. The solution gives a mechanism described by the 
following values of strike, dip and slip: 330°, 8°, 105° respectively (see figure 8). The 
estimate of source depth is equal to 13 km. The estimated value of seismic moment is 
0.52·1023 N·m. 

 
 

Fig. 8. Double-couple solution and source depth resolution curve. 
P1: 330°, 8°, 105°; P2: 135°, 82°, 88°. M0 = 0.52·1023 N·m  

 
Determining 2-nd moments of moment tensor density we consider the nodal plane dipping to 
the northeast as a fault plane. We fixed source depth (13km) and focal mechanism obtained in 
instant point source approximation. Usually when double-couple parameters are obtained 
from periods long enough to consider the source as an instant and point, we fix seismic 
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moment as well. But in this case the periods are not sufficiently long, so we recalculated 
seismic moment determining source 2nd moments. As it was mentioned above we estimate 
the duration and the geometry of the source from the same amplitude spectra of fundamental 
Love and Rayleigh modes in the same spectral band (from 500 to 650 seconds) that was used 
for inversion in instant point source approximation.  
Our final estimate of seismic moment is equal to 0.84·1023 Nm. The residual functions for 
integral estimates are given in figure 9. The inversion yields the integral estimate of duration 
being about 160 s, a characteristic source length (major axis length) of 300 - 400 km. The 
minor axis length is poorly resolved, lying between 0 and 200 km. The average instant 
centroid velocity estimate is about 2 km/s. The angles giving the major axis and velocity 
vector orientations are measured clockwise on the footwall starting from the strike axis. They 
are consistent with each other and residual functions attain their minimum values at 15°. 
 

 
 

Fig. 9. Residual functions for source integral characteristics. 
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IV. Comparison of large scale average characteristics of the Sumatra-Andaman 
earthquake models constructed from different observations. 
The December 26, 2004, Sumatra-Andaman earthquake is not only one of the greatest 
earthquakes that occurred for the last decades - it is the first event of such a scale which was 
studied using a wide spectrum of observations with characteristic periods from fraction of 
seconds to months. 
Direct comparison of resulting models shows their large difference. But it is more correct to 
compare their large scale characteristics. It was shown (McGuire et al. 2001; Clevede et al. 
2004) that integral characteristics of rupture process estimated by second order moments of 
slip rate distribution over the fault related to source size, orientation, duration and rupture 
velocity vector, can be useful for 
comparison of models obtained from different observations and their combinations. We 
compared second moments of coseismic slip distribution for models constructed from 
seismological, geodetic, altimetric, and tide gauge measurements. As a constrain in the 
comparison we use presented above estimates of the same integral moments retrieved from 
observed surface wave spectra in period band from 500 s to 650 s.  
 
Models used in this study 
Among the numerous studies of the Sumatra-Andaman rupture process we selected eight, 
considering different type of data either by inversion or as constrains.  

- Lay et al. (2005) performed seismological analysis and tsunami modelling using 
altimetric and tide gauge data.  

- Ammon et al. (2005) used very broadband seismological data (80-3000s) for the slip 
distribution model we use (refered as model II).  

- Banerjee et al. (2007) used far-field and near field geodetic data (GPS).  
- Pietrzak et al. (2007) used far-field and near field geodetic data (GPS). 
- Rhie et al. (2007) used geodetic and long-period (100-500s) seismological data.  
- Sladen and H´ebert (2008) used altimetric data.  
- Ammon et al. (2005) used very broadband seismological data from 5s to 2000s 

(refered as model III)  
- Ammon et al. (2005) 1D model used data from 80s to 500s (refered as IRT 1D 

model). 
 
Integral estimates of models 
In order to compare these models and our results of long period surface wave inversion, we 
compute the integral characteristics of these models corresponding to the stress glut rate 
moments of degree 0, 1 and 2 directly from their theoretical definitions given by formulas 
(3.1-3.6). Both distributions of moment rate (in space and in time) were available for model II 
(Ammon et al., 2005) only. So, for this model we estimated spatial characteristics as well as 
duration. Only source time function was available for two last models in the list above, and 
only final moment distribution over the fault was available for the rest five models.     
 
Spatial characteristics 
For first six models we estimated the spatial centroid location and the ellipse characteristics 
(principal axes length and orientation). All these models are obtained using geodetic and/or 
very long period seismic or altimetric data.  
In the case of Lay et al. (2005) the model includes two separate types of slip, one being fast, 
corresponding to a rise time of 50s, the other one being slow, corresponding to a rise time of 
3500s. Thus we consider for Lay et al. (2005) two ‘sub-models’: one for total slip distribution 
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and another one for fast slip distribution only. These integral estimates for all seven models 
are summarized in the table 1.  
The spatial integral characteristics of all the complete models are fairly compatible. The 
length of the minor axis ranges from 116 to 152km, the length of the major axis ranges from 
523 to 708km. However, the estimates for length of major axis are not compatible with our 
estimate obtained from surface waves inversion (300 to 400 km). But, the estimate obtained 
for ‘fast slip sub-model’ from Lay et al. (2005) (327 km) fits our surface-wave estimate. In 
this model there is no fast slip to the North of Nicobar segment (about 8°N). 
We decided to compare the lengths of major axis for all models being truncated, excluding 
slip to the North of 8°N. Results are presented in the last column in table 1. The estimates for 
all truncated models fit our surface wave estimate well. 

 
 

Model 
Azimuth of 
major axis, 

deg. 

Length of 
minor axis,

km 

Length of 
major axis,

km 

Length of major axis 
for truncated model, 

km 
Banerjee et al. 

Model  C 
 

347 
 

127 
 

708 
 

361 
Sladen model   

(altimetric data)
 

348 
 

147 
 

654 
 

359 
Pietrzak et al. 
Model asv8 

 
336 

 
104 

 
550 

 
402 

Lay et al. 
total slip 

 
342 

 
131 

 
523 

 
328 

Lay et al. 
fast slip only 

 
328 

 
116 

 
327 

 
- 

Rhie et al. 
Model BJ 

 
346 

 
117 

 
617 

 
341 

Ammon et al.    
Model II 

 
343 

 
152 

 
648 

 
403 

 
Table 1. Spatial characteristics of models. 

 
Integral estimate of duration 
The moment rate dependence on time is given by Ammon et al. (2005) for three different 
models: The IRT 1D model is constructed using Rayleigh waves for periods from 80 s to 500 
s by inverse Radon transform; the two other models use very long-period seismic waves, 
respectively 100 s to 3000 s for model II, and 250 s to 2000 s for model III. 
We compute the integral estimate of duration for these three models (table 2). While the 
estimates for models using very long periods are much larger (241 s and 247 s) than our 
surface waves estimate (160 s), the estimate obtained for the IRT 1D model using long period 
waves (187 s) is close to our estimate. 
 

Model Period band of inverted 
seismic waves 

Integral duration 

IRT 1D model 80 to 500 s 187 s 
Model II 100 to 3000 s 241 s 

Model: III 250 to 2000 s 247 s 
 

Table 2. Integral estimates for duration. 
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Conclusions 

- Considering Long period Rayleigh wave directivity, Ammon et al. (2005) stated that 
modeling of simple propagating rupture suggests that Rayleigh waves observations for 
periods shorter than 600 s are compatible with north-northwest propagation of a 
rupture at about 2.5 to 3 km/s for 400 to 600 km from the southern end of the fault. 
But observations for periods longer than 600s are only partly accounted for by this 
model, suggesting that additional slip extended in either time, space, or both is 
required to explain the very long period surface wave data. 

- Considering seismic and tsunami observations, Lay et al. (2005) suggest a composite 
slip model with fast slip in the southern portion of the rupture, and slow slip to the 
North of Nicobar segment (about 8°N). 

- We have shown that integral estimates of the source length and duration for models 
obtained from geodetic and/or very long period seismic or altimetric data are larger 
than our long period ( from 500 s to 650 s) surface wave estimates (tables 1 and 2). 
Integral estimates of size for the same models truncated to the North of 8° fit our long 
period surface wave estimate (table 1). Integral estimate of duration for the IRT 1D 
model (Ammon et al. 2005) using long period Rayleigh waves (up to 500 s) fit our 
long period surface wave estimate (table 2). 

 
Summarizing these results, and relying on the fact that the size of the source is constrained by 
HF P-wave energy radiation (Gusev et al. 2007; Lomax 2005) and very long-period data (normal 
modes, tsunami) (Lay et al. 2005; Ammon et al. 2005; Park et al. 2005), we propose that the 
Northern part of the Sumatra-Adaman fault (to the North of 8°) radiated very long period 
seismic energy and did not radiate long period seismic energy at periods shorter than 650 s. 
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