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 1. Introduction 
We consider surface waves radiated by an instant point source in horizontally homogeneous 

medium. For the spectrum of displacement in surface wave u(r,ω) at a point r we have 
(Woodhouse, 1974; Babich et al., 1976; Levshin et al., 1989; Bukchin, 1990):  

)],(exp[),,,()(),( ωψϕωωω rMqru ihP −= ,       (1) 
where q(ω) is a complex vector depending on Earth structure, M - moment tensor, h - source 
depth,  ϕ  - azimuth of surface wave radiation, ψ(r,ω) – propagation phase, and ω – circular 
frequency. The factor P determines the radiation pattern of the source (azimuth dependence of 
spectral amplitude) and the initial (source) phase.  

For Love wave this factor is defined by formula 
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where V(τ) (z) – transverse eigenfunction, i is the imaginary unit, and the coordinate system is 
defined in the following way: 1 – vertical, 2 – north, and 3 – east. 

For Rayleigh wave the function P is given by formula 
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where V(z) (z) , V(r) (z) – vertical and radial components of eigenfunction.  
If the source is rotated around vertical axis by 180° (strike axis is rotated by 180°) all 

moment tensor elements except M12 and M13 do not change, while elements M12 and M13 just 
change their sign to the opposite. As can be seen from formulas above as a result of such rotation 
the function Р(М,h,ω,ϕ) is changing to complex conjugate.  

The coefficients 
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wave are proportional to the force acting on a horizontal plane. But such a force is vanishing at 
the free surface (h = 0).  As a consequence if the source depth h is much smaller than the wave 
length, the moment tensor elements M12 and M13 almost do not affect on the surface waves 
radiation pattern and source phase, and they can not be resolved from observed spectra. At the 
same time the imaginary part of function Р(М,h,ω,ϕ) is small and the rotation of source around 
vertical axis by 180° doesn’t change radiated surface waves. The last property of shallow source 
was studied by Henry et al., 2002. They explained for the case of double-couple the two-fold 
rotational symmetry of the misfit function about the vertical axis of the moment tensor and 
demonstrated it for a set of earthquakes. Actually such symmetry is valid for general source.  

The elements M12 and M13 do not affect on the surface waves radiation so long as they do not 
exceed significantly by absolute value other elements of moment tensor. But if these two 
elements are dominant then they do contribute in the surface wave radiation for any nonzero h.  
For example, a source with other components equal to zero will radiate surface waves for any 
nonzero depth.  

Limiting ourself with the case of pure double-couple at the depth h which is much smaller than 
the wave length we describe completely the family of equivalent sources radiating practically the 
same surface waves in long period spectral band (see for the details Bukchin, 2006).  

For simplicity we consider a double-couple with zero strike angle (nonzero strike angle 
results in rotation of radiation diagram around vertical axis by this angle). In this case moment 
tensor elements can be presented as following functions of two other angles defining the focal 
mechanism 

 2



.2cossin,coscos,sincos

,2sinsin,0,2sinsin

013012023

03322011

δλδλδλ

δλδλ

MMMMMM

MMMMM

=−==

−===
   (4) 

Here M0 is the seismic moment, λ is the rake angle and δ  is the dip angle of double-couple. As 
follows from formulas (4) the absolute values of moment tensor elements M12 and M13 start to 
exceed the absolute values of all other elements when δ  is vanishing and nodal plane becomes 
sub-horizontal. Similar situation takes place when δ tends to a limiting value 90° together with λ 
tending to a limiting value ±90°, and as result all moment tensor elements apart from M13 are 
vanishing. Note that in this case the auxiliary nodal plane becomes sub-horizontal. So, moment 
tensor elements M12 and M13 can be resolved from observed spectra if and only if one of nodal 
planes of double-couple becomes sub-horizontal.  

We are starting from consideration of two special cases: pure thrust (or normal) fault and 
pure strike-slip, and investigate the dependence of surface waves radiation on the value of dip 
angle δ. These cases were described by Kanamori and Given, 1982. After that we will consider 
general case of double-couple.  
 
2. Two special types of double-couple. 
2.1. Pure thrust (or normal) fault. 

In the case of pure thrust (or normal) fault we have λ = 90° (or λ = - 90° ), cosλ = 0, and  
sinλ = 1 (sinλ = -1). As can be seen from formulas (4) in this case there are only three non-zero 
moment tensor elements: δ2sin03311 MMM ±=−=  and δ2cos013 MM ±= . If the source depth 
is small and the value of δ at the same time is not too close to 0° or to 90° then the imaginary 
part of function Р(М,h,ω,ϕ) is negligible. Substituting moment tensor elements as functions of 
M0 and δ  in real part of Р(М,h,ω,ϕ) (see Appendix 1) it is easy to show (Bukchin, 2006) that the 
dependence of surface wave radiation pattern and source phase (which is close to 0 or π) on 
azimuth ϕ for different values of δ  are similar to those for  δ = 45° when cos2δ = 0. Furthermore 
all double-couples with the same value of the product M0sin2δ radiate the same surface wave 
field. So, neither dip angle nor seismic moment (and as result - moment magnitude) can be 
uniquely determined from surface wave spectra. Note, that the family of double-couples under 
consideration consists of symmetric with respect to vertical axis pairs of double-couple.  

But in the case when dip angle δ  belongs to the vicinity of 0 [0,δ0] or to the vicinity of 90°  
[90°-δ0, 90°] the function Р(М,h,ω,ϕ) essentially depends on the δ value. Consequently the dip 
angle and seismic moment can be uniquely determined from observed surface wave spectra. 
Here δ0 is a small threshold value dependent on the structure, on the period and on the source 
depth.  

This dependence of radiated surface waves on the value of dip angle is schematically 
illustrated in Fig. 1. The ‘integral change of spectrum’ denotes the integral over the radiation 
azimuth of the modulus of the difference between complex spectrum correspondent to the 
current value of δ  and spectrum correspondent to δ = 45°.  
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Fig.1. Dependence of radiated surface waves on the dip angle for a shallow trust (or 
normal) fault. 

 
2.2. Pure strike-slip fault. 

In the case of pure strike-slip fault the rake angle λ = 0° for a left-lateral fault and λ = 180° 
for a right lateral fault. Correspondingly sinλ = 0, and cosλ = 1 (cosλ = -1). In this case there are 
only two non-zero moment tensor elements:  δsin023 MM ±=  and δcos012 MM m= . If the 
source depth is small and the value of δ  at the same time is not too close to 0° then the 
imaginary part of function Р(М,h,ω,ϕ) is negligible. Substituting moment tensor elements as 
functions of M0 and δ  in real part of  Р(М,h,ω,ϕ) (see Appendix 1) it is easy to show (Bukchin, 
2006) that dependence of surface wave radiation pattern and source phase (which is close to 0 or 
π) on azimuth ϕ for different values of δ  are similar to those for δ = 90° when cosδ = 0 (pure 
strike-slip on a vertical fault). 

All double-couples with the same value of the product M0sinδ radiate the same surface wave 
field. So, as in the case of pure thrust or normal fault, neither dip angle nor seismic moment can 
be uniquely determined from surface wave spectra. Note, that double-couples symmetric with 
respect to vertical axis to those under consideration must be added to the family of equivalent 
sources. 

 
But in the case when dip angle δ  belongs to the vicinity of 0 [0,δ0] the function Р(М,h,ω,ϕ) 

essentially depends on the δ value. Consequently the dip angle and seismic moment can be 
uniquely determined from observed surface wave spectra. As before δ0 is a small threshold value 
dependent on the structure, on the period and on the source depth. 

This dependence of radiated surface waves on the value of dip angle is schematically 
illustrated in Fig. 2. The ‘integral change of spectrum’ denotes the integral over the radiation 
azimuth of the modulus of the difference between complex spectrum correspondent to the 
current value of δ  and spectrum correspondent to δ = 90°.  
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Fig.2. Dependence of radiated surface waves on the dip angle for a shallow strike-slip 
fault. 

 
3. General case of double-couple.  

A general double-couple with rake angle λ and dip angle δ can be presented as a sum of a 
thrust (or normal) fault and a strike-slip with weights sin λ and cos λ correspondingly and with 
the same dip angle δ.  

When the value of λ is close to 0° or 180°, the value of sin λ is close to 0 and radiated 
surface waves are practically the same as in considered case of pure strike-slip. When the value 
of λ is close to 90° or -90°, the value of cos λ is close to 0 and radiated surface waves are 
practically the same as in considered case of pure thrust or normal fault. Let us consider now a 
double-couple with rake angle λ which is different from 0°, 180° and ±90°.  

Let δ0 be the larger of two threshold values estimated for thrust and for strike-slip components 
for given structure, source depth and period. Let δ be larger then δ0. If the source depth is small 
then the imaginary part of function Р(М,h,ω,ϕ) is negligible.  

Substituting moment tensor elements as functions of M0 , λ and δ  in the real part of 
Р(М,h,ω,ϕ) (see formulas (A1.5) and (A1.6) in  1) it can be shown (Bukchin, 2006) that all 
double-couples with values of λ , δ  and M0 satisfying the identities  

1costan C≡δλ           (5) 
and 

20 cossin CM ≡λδ           (6) 
have the same surface wave radiation pattern and source phase. C1 and C2 in formulas (5) and (6) 
are constant values. 

So, as before neither focal mechanism nor seismic moment for such a source can be uniquely 
determined from surface wave spectra. After we have found any of equivalent double-couple 
solutions we can calculate the constants in the right parts of identities (5) and (6) using obtained 
values of λ, δ  and M0. The identity (5) gives us the description of all equivalent solutions (pairs 
of dip and rake angle values), and using the identity (6) we calculate corresponding values of 
seismic moment. To decide between values of rake angle λ and λ+180° satisfying the identity (5) 
we use following condition: the value of cosλ must have the same sign as constant C2. Adding to 
the pairs of dip and rake angle values the value obtained for strike angle we describe the first 
branch of equivalent double-couples. Substitution of the strike angle value ψ  by value ψ +180° 
gives us the second branch of equivalent double-couples.  
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It is important to note that if we would use for calculation of the constants in the right parts 
of identities (5) and (6) the values of λ and δ correspondent to the second nodal plane of the 
same double-couple, the identities will describe the same family of equivalent sources. It follows 
from two formulas valid for any double-couple 

2211 costancostan δλδλ −=          (7) 
and  

2211 cossincossin λδλδ −= ,         (8) 
where λ1, δ1 and  λ2, δ2 are rake and dip angles corresponding to two nodal planes of a double-
couple. Formulas (7) and (8) can be obtained from main relations between angles corresponding 
to two double-couple nodal planes (Ben-Menahem and Singh, 1981). 

Let in contrary the dip angle δ of one of nodal planes is so small that it belongs to the vicinity 
of 0 [0,δ0], where δ0 is the smaller of two threshold values estimated for thrust and for strike-slip 
components for given structure, source depth and period band. In this case the imaginary part of 
function Р(М,h,ω,ϕ) becomes comparable to its real part and both the surface wave radiation 
pattern and source phase depend significantly on the dip and rake angles. As result if one of 
nodal planes is subhorizontal then the focal mechanism and seismic moment of a shallow source 
can be uniquely determined from the spectra of surface waves recorded at various points of the 
Earth’s surface.  

Let us consider equivalent solutions given by equation (5) and their behavior on proceeding 
to the limits C1 → ± ∞ and C1 → 0. A contour plot of the left-hand part of identity (5) is shown 
in the figure 3.  

Every isoline corresponds to a family of equivalent solutions. Gray strip along the axis δ = 0 
and gray sectors centred on points of intersection of the axis δ = 90° with axes λ = -90°, λ = 90° 
and λ = 270°, show the regions where one of nodal planes is subhorizontal and every solution of 
inverse problem is unique. We show in the figure 3b beach balls correspondent to different 
points of axes λ = -90°, λ = 0, λ = 90°, λ = 180°, λ = 270°, and δ = 90° with 15° step. The value 
of strike angle for all double couples is fixed equal to 0. The beach balls at the axis λ = 270° are 
repeating the beach balls at the axis λ = -90°.   
Let us consider the behavior of isolines on proceeding to the limits C1 → ± ∞ and C1 → 0. 

(a) C1 → ± ∞ 
As one can see from the figure 3 on proceeding to the limits C1 → + ∞ and C1 → - ∞ the 

isolines tend to coordinate axes λ = 90°, λ = -90° and λ = 270°, and equivalent double-couples 
are pure dip-slips. Note, that for every double-couple with λ = 90°, λ = -90° and λ = 270° the 
symmetric with respect to vertical axis double-couple coincides with one of double couples of 
the same set shown in the figure. Proceeding to limits λ → 90°, λ → -90° or λ → 270° in 
equations (5) and (6) one can get the equation ,2sin0 CM ≡δ  which was obtained in paragraph (2.1) 
for pure dip-slip. 
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Fig. 3. (a) A contour plot of function tanλcosδ and (b) the same contour plot with superimposed 
beach balls for different points of axes λ = -90°, λ = 0, λ = 90°, λ = 180°, λ = 270°, and δ = 90° 
with 15° step. Equivalent double-couples are given by beach balls filled by the same shades of 
gray. Contours are marked by correspondent value of constant C1 in the equation (5).  
 

 (b) C1 → 0. 
As one can see from the figure 3 on proceeding to the limit C1 → 0 the isolines tend to 

horizontal axes λ = 0 and λ = 180°, and to vertical axis δ = 90°.  
Double-couples correspondent to points at the axes λ = 0 and λ = 180° are pure strike slips. 

Double-couples correspondent to points at the axis δ = 90° are slips on a vertical fault. Strike 
slips with λ = 0 together with slips on a vertical fault with λ  belonging to the interval (-90°, 90°) 
form a family of equivalent double couples. Strike slips with λ = 180° together with slips on a 
vertical fault with λ  belonging to the interval (90°, 270°) form another family of equivalent 
double couples.   

Note, that for every double-couple with δ = 90° the symmetric with respect to vertical axis 
double-couple coincides with one of double couples of the same set showing in the figure. But 
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double-couples symmetric with respect to vertical axis to double-couples with λ = 0 or λ = 180° 
(pure strike slips) don’t belong to these sets and they must be added to the family of equivalent 
double-couples..  

Proceeding to the limits λ → 0 or λ → 180° we have for the right part of identity (5) C1 = 0, 
and the identity (5) is valid for any value of δ. Identity ( 6) in this case transforms to the same 
identity CM ≡δsin0 , which we obtained for seismic moment in paragraph 2.2. For λ → 0 and 
λ → 180°  we have C = C2 and C = - C2 correspondingly.  

On proceeding to the limit δ → 90° the identity (5) is valid for the same zero value of the 
constant C1 for any value of λ, and identity (6) transforms to identity 20 cos CM ≡λ .  
Application to March 25, 1998 Antarctic earthquake 

We illustrate the adequacy of the description of equivalent focal mechanisms by application 
to March 25, 1998 Antarctic earthquake. A contour plot of the misfit function for this event 
given in the figure 4 was copied (with permission of S.Das) from Henry et al., 2002. It is plotted 
for double-couple moment tensors at depth 10 km. Points to the left of the vertical dashed line at 
the center of the figure have strike 96° and rakes corresponding to the left ordinate. Points to the 
right of the line have strike 276° and rakes corresponding to the right ordinate. Crosses labeled 
with the letters C and D mark the optimal pure double-couple moment tensors. 
The curves 1 and 2 superimposed on the contour plot are calculated using identity (5) with the 
value of constant in the right part corresponding to the optimal solution C. As one can see the 
curves are in a good agreement with the shape of the misfit contours. 

 
Fig.4. A contour plot of the misfit function for the March 25, 1998 Antarctic earthquake, 
copied from Henry et al., 2002. The curves 1 and 2 superimposed on the contour plot 
correspond to solutions equivalent to solution labeled by letter C (strike 276°, dip 69°, 
rake -28°) for small source depth. 

 
4. Solomon islands earthquake, 01.04.2007.  

As a first step we determined the double-couple for this event by joint inversion of long 
period surface wave amplitude spectra and first arrival polarities (Lassere et al. 2001). We 
selected long period seismograms from 11 GEOSCOPE stations. The fundamental mode of Love 
and Raleigh waves are retrieved from observed surface wave trains using frequency-time 
analysis and floating filtering of signals, as described by Levshin et al. (1989). We selected 
records of a good quality in period range from 160 to 300 seconds. The distribution of stations is 
shown in the   Fig. 5. 
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We calculate surface wave spectra assuming that the propagation medium has only weak 
lateral inhomogeneities. In this case, the surface wave part of the Green's function is determined 
by the structure near the source and the receiver, by the average phase velocity along the path, 
and by the geometrical spreading (Woodhouse, 1974; Babich et al., 1976; Levshin et al., 1989; 
Bukchin, 1990). For surface wave spectra calculation we used in the source region as well as 
under the receivers the 3SMAC model (Ricard et al. 1996) for the crust and the preliminary 
reference earth model (PREM) below.  

 

 
 
Fig. 5. Station distribution used for the double-couple and source depth inversion. The 
figure is centered on the Solomon islands earthquake epicenter. Filled and blank 
triangles mark the use of Love and Rayleigh wave records correspondingly. 

 
Our best fitting solution gives a mechanism described by the following values of strike, dip 

and rake angles: 151°, 77°, 98° respectively. The best fitting source depth is around 10 km. The 
estimate of seismic moment is 0.27·1022 N·m.  

We compared this double-couple with best double-couples corresponding to global CMT 
solution and to GEOSCOPE solution. Both these solutions where obtained by long period 
surface waves inversion (T > 150 s).  Our double-couple (solution 1) is significantly different 
from two other solutions (Fig. 6).  
 
 

 
 

Fig. 6. Three double-couples obtained for Solomon Islands earthquake.  1 – result of 
this study by joint inversion of long period surface wave amplitude spectra and first 
arrival polarities (ψ = 151°, δ = 77°, λ = 98°),   2 - Global CMT solution  (ψ = 331°, 
δ = 38°, λ = 120°), 3 - GEOSCOPE solution (ψ = 331°, δ = 25°, λ = 123°).  

 
However we have found that solutions 2 and 3 are very similar to double-couples which are 

equivalent to solution 1 for vanishing value of source depth. This result is illustrated in the Fig.7. 
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This figure is constructed in the same way as Fig.4 for the 1998 Antarctic earthquake (Henry et 
al., 2002) but instead of misfit between synthetic and observed spectra we consider here the 
misfit function between two synthetic spectra calculated for current double-couple (defined by 
focal mechanism angles at any point of the map) and for solution 1. Contour plot is given for 
period 200 s and for source depth fixed at 10 km. In the same figure we show by dashed curves 
the solutions equivalent to the solution 1 for vanishing depth. These curves are calculated using 
identity (5) with the value of constant in the right part corresponding to the solution 1. As one 
can see solutions 2 and 3 are very close to one of these curves. Note the growth of misfit for 
points in the equivalent solution curves verging towards vertical axes δ = 0 and δ = 90°. Double- 
couples correspondent to points in these curves in the vicinity of the vertical axis δ = 90° have 
rake angle close to 90°, and consequently the dip angle of correspondent auxiliary nodal planes 
have dip angle close to 0. So, in these both extreme cases one of nodal planes of double-couple is 
subhorizontal, and large misfit confirms our description of the family of shallow double-couples 
which can be uniquely determined from long period surface waves. 
 

 
Fig. 7. Contour plot of the normalized misfit between spectra calculated for current 
double-couple and for double-couple obtained by joint inversion of surface wave 
amplitude spectra and first arrival polarities (marked by figure 1). The spectra of 
fundamental Love and Rayleigh modes are calculated for period 200 s for 72 points 
uniformly located around the source at a distance 9000 km. The source depth is fixed at 
10 km. Points to the left of the vertical dashed line at the center of the figure have strike 
151° and rakes corresponding to the left ordinate. Points to the right of the line have 
strike 331° and rakes corresponding to the right ordinate. Dashed lines correspond to 
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solutions equivalent to the solution 1 for vanishing depth. Global CMT and 
GEOSCOPE solutions are marked by figures 2 and 3 correspondingly. 
 
To select from equivalent focal mechanisms the true one we have to use additional data.  

Note that our solution 1 in contrast to solutions 2 and 3 is well consistent with first arrival 
polarities observations. But this earthquake was rather long: CMT estimate of its duration was 
more than 50 seconds. Therefore it is not quite proper to use first arrival polarities – readings 
from short period seismograms. Instead of this we use as additional data the long period 
polarities of direct P-waves shown in Fig. 8. We select from equivalent focal mechanisms those  

 
Fig. 8. Initial 15 seconds of normalized broadband records of displacements. The time 
origin corresponds to the first arrival time. Solid lines correspond to positive P-wave 
polarization, dashed lines correspond to negative P-wave polarization.  1 - DAV,          
2 - ERM, 3 - INCN, 4 - INU, 5 - KAPI, 6 - KIP, 7 - MAJO, 8 - MBWA, 9 - NWAO,  
10 - POHA, 11 - RAO, 12 - SNZO. 
 

which are consistent with these observations.  The results of such analysis are presented in the Fig.9. 
As one can see solution 1 and two nearest solutions (solutions marked out by rectangle) can be 
selected as optimal.  

Thus, it is shown that using surface wave long period spectra, presented description of equivalent 
double-couples and as additional data - long period polarities of direct P-waves, it is possible to 
determine the optimal double-couple describing a shallow seismic source with sufficiently high 
accuracy. 
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Fig. 9. Solutions equivalent to the solution 1 for vanishing depth. Double-couples in the 
upper part have strike equal to 151°, double-couples in the lower part have strike equal to 
331°. Long period polarities of direct P-waves are superimposed. The values of dip angle 
d are given near every beach ball. Solutions fitting with the long period polarities of 
direct P-waves are marked out by rectangle. 

 
5. Dependence of constants C1 and C2 conditioning the equivalent double-couples on 
moment tensor elements M11, M22, M33, and M23
Let elements M22, M33 and M23 of deviatoric moment tensor M are given. Note that moment tensor 
element M11 is defined by zero-trace condition M11 + M22 + M33 = 0. Expressing M22, M33 and M23 
through seismic moment and focal mechanism angles we obtained existence condition for double-
couples with given values of these moment tensor elements, and formula describing the set of such 
double-couples (see Appendix 2).  
The existence condition for double-couples with given values of moment tensor elements M22, M33 
and M23 has form of inequality 

2
233322 MMM ≤ .           (9) 

If this condition is satisfied then such doubles exist and have strike angle given by formulas 
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The constants C1 and C2 in formulas (5) and (6) describing the families of equivalent double-couples 
can be expressed through the same values defined above: 
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 So, if deviatoric moment tensor M in case of shallow source is obtained by inversion of long 
period surface waves then values of its four elements only (M11, M22, M33 and M23) are reliable. If 
condition (9) is valid, then using formulas (10) – (11) one can obtain the values of constants C1 and 
C2. Formulas (5) and (6) with obtained constants C1 and C2 provides complete description of double-
couples radiating the same long period surface waves as original deviator M. 
If in contrary the condition is not valid, then there is no double-couples radiating the same long 
period surface waves as original deviator M. 
Let us come back to the March 25, 1998 Antarctic earthquake. Harvard best double-couple solution 
is marked in the figure 4 by letter B. As one can see it is far enough from optimal double-couples C 
and D obtained by Henry et al., 2002 and from our curves 1 and 2 correspondent to equivalent 
double-couples. Using values of moment tensor elements from Global CMT catalog we found that 
condition (9) is valid. We applied scheme described above. The difference between obtained family 
of equivalent focal mechanisms and family of focal mechanisms equivalent to the optimal double-
couple C is very small. One of equivalent focal mechanisms is defined by following values of 
angles:  .31,69,275 °−=°=°= λδψ  From the comparison of these values with corresponding 
values for the optimal double-couple C ( °−=°=°= 28,69,276 λδψ ) one can see that the 
difference between them is negligible. In spite of the fact that the difference between seismic 
moments of these two double-couples is significant (1.87·1028 dn·sm and 1.87·1028 dn·sm 
correspondingly) one can see that these two double-couples are much closer to each other than 
solutions B and C in the figure4. 
 
This example shows that for shallow deviatoric source inverted from long period surface waves and 
satisfying the condition (A2.6) it is more reasonable to consider the equivalent double-couples than 
the closest double-couple which depends on the values of elements M12 and M13 which are not 
estimated reliably.  
 
 
Appendix 1. Radiation pattern dependence on focal mechanism angles. 
 
For Love wave the function P is given by formula 
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For Rayleigh wave the function P is given by formula 
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If neither of the two nodal planes is subhorizontal, i.e. δ is not infinitely near 0, and δ is not 
infinitely near 90° together with λ infinitely near ± 90°, then the imaginary part of function 
Р(М,h,ω,ϕ) is negligible and formulae (A1.1, A1.2) take on form 

]cossin2cossin2sin2sin5.0[),(),,,( 0
)( λδϕλδϕωξϕω τ −−= MhVhP M   (A1.3) 

and 
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−

+
∂

∂
=M

    (A1.4) 

If λ is different from ± 90° and δ is different from 0 then formulae (A1.3, A1.4) can be rewritten in 
form 

]2costancos2[sincossin),(),,,( 0
)( ϕλδϕλδωξϕω τ −−= MhVhP M    (A1.5) 

and 
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∂
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  (A1.6) 

for Love and Rayleigh correspondingly. 
 
Appendix 2. Double-couples with given values of moment tensor elements M22, M33 and M23 
 
Let elements M22, M33 and M23 of deviatoric moment tensor M are given. 
Assuming M to be a double-couple we express M22, M33 and M23 through seismic moment and focal 
mechanism angles:  

( )
( )
( )⎪

⎩

⎪
⎨

⎧

−=

+=
+−=

ψδλψδλ

ψδλψδλ
ψδλψδλ

2
033

023

2
022

cos2sinsin2sinsincos

2sin2sinsin5.02cossincos
sin2sinsin2sinsincos

MM

MM
MM

 

Transforming the system we have  

( )
( )⎪

⎩

⎪
⎨

⎧
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−=+

ψδλψδλ
ψδλψδλ

δλ

2sin2sinsin2cossincos22
2cos2sinsin2sinsincos2

2sinsin

023

02233

03322

MM
MMM

MMM
 

Let    ,  ,  13322 AMM =+ 22233 AMM =− 3232 AM = .      
Then the system takes form 

(
( )⎪

⎩

⎪
⎨

⎧
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=−

=−

30

20

10

2sin2sinsin2cossincos2
2cos2sinsin2sinsincos2

2sinsin

AM
AM

AM

ψδλψδλ
ψδλψδλ

δλ
)       

Combining the second and the third equations of the system we have finally  
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⎪
⎩
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⎧
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ψψδλ

δλ

2cos2sinsincos2
2cos2sin2sinsin

2sinsin
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10

AAM
AAM
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       (A2.1) 

Summing the first and the second equations of the system (A2.1) we have equation for ψ  
123 2cos2sin AAA −=− ψψ .         (A2.2) 

This equation divided by 2
2

2
3 AA +  takes form  

2
2

2
3

1
2

2
2

3

2
2

2
2

3

3 2cos2sin
AA

A

AA

A

AA

A

+
−=

+
−

+
ψψ .     (A2.3) 

We’ll solve this equation using auxiliary argument technique. Let ϕ be an angle defined by 
following equalities 

ϕϕ cos,sin
2

2
2

3

2
2

2
2

3

3 =
+

=
+ AA

A

AA

A .       (A2.4) 

Then equation (A2.3) takes form 

2
2

2
3

1)2cos(
AA

A

+
=+ ϕψ .         (A2.5) 

Equation (A2.5) gives us the desired condition on given values of moment tensor elements: 

1
2

2
2

3

1 ≤
+ AA

A .           

Using the definition of constants A1, A2, and A3 we can rewrite the this condition in terms of moment 
tensor elements M22, M33 and M23 : 

( )
( )

1
4 2

2233
2

23

2
3322 ≤
−+

+
MMM

MM    or  ( ) ( )2
2233

2
23

2
3322 4 MMMMM −+≤+ , and opening the brackets we 

have finally 
2

233322 MMM ≤ .          (A2.6)) 
 
Value of ϕ  is uniquely defined by formulas (A2.4), and if condition (A2.6) holds true, we get from 
formula (A2.5) following solutions for ψ   

)arccos(5.0
2

2
2

3

1 ϕψ −
+

±=
AA

A .        (A2.7) 

Two solutions for ψ given by formula (A2.7) correspond to two nodal planes. 
So, only in the case if given values of deviatoric moment tensor elements satisfy the condition 
(A2.6) there are double couples with the same values of three given elements. These double-couples 
are equivalent with respect to radiated surface wave fields if the depth of the source is much smaller 
than the wave length. 
Considering the ratio of the first and the third equations of system (A2.1) and its third equation we 
have     

⎪⎩

⎪
⎨

⎧

+=
+

−=

)2cos2sin(5.0sincos
2cos2sin

costan

320

32

1

ψψδλ
ψψ

δλ

AAM
AA

A
.      (A2.8)) 

The value of ψ  in (A2.8) is defined by formula (A2.7)). 
Formulas (A2.8) with computed value of ψ  define the family of double couples equivalent to 
deviator M in the case if its elements M12 and M13  are not much larger by absolute value than 
all other elements.  
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Right parts of equalities (A2.8) define constants C1 and C2 in formulas (5) and (6) describing the 
families of equivalent double-couples: 
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