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Examples

1. Fluid injection and pore pressure diffusion
2. Hydro-fracturing & magma intrusions

* Qas field stimulation

* Long lasting intrusions

3. Gas field depletion

Case I: fluid & pore pressure diffusion

Examples:
— Denver 1962-1968: three M>5 events, 21 month
after the end of injection

— Chalia chemical waste disposal 1972-1985, M5
event 12 km south of well 14 years after injection

— Ashtabula, Ohio, sequence 1987-2003, M< 4.3,
9 years after end of injection

References for all three cases given in Seeber et al. (2004)

Example: Temperature-diffusion in salt mine
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1-D Temperature diffusion after “heat injection” at plane z=0.
Temperature (and stress) slowly spreads out and “relaxes” at “injection point”

The same laws apply for fluid and pore pressure diffusion or dissolution




The Ashtabula, Ohio, sequence related

to waste fluid injection
into 1.8 kmydeep sandstone
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164 m3/day at 10 MPa (59.860 tons/yr) Seeber at al., 2004, BSSA 94, 76-87

Compare: planned CO2 sequestration intends to inject several Mt/ yr over >15 yr

Fluid-injection triggered events

1. Injection related pore pressure rise
(diffusive) triggers earthquakes according
to Coulomb criterion

2. Pore pressure dropping back at the well
after injection stops, but maximum
continuous to spread away from injection
well for tens of years up to 8 - 14 km
distance or more

3. Pore pressure transients can be simulated
by hydraulic diffusive modelling

Case 11

Hydrofracture induced seismicity




Hydrofrac stimulations in Canyonsand
gas field, W. Texas
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distance time plot, stage 3
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Hypotheses:
a) Front and backfront are controlled

0 1 20 % 4 50 6 70 & by pressure diffusion

b) Front- and backfront, asymmetric
growth and intensity of seismicity are
controlled by the shape of the fluid-

09123108 willled fracture (our model)

Fracture opening during injection

Sketch of hydrofracture
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Injection pressure PO and gradient g controls growing velocity
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Injection phase: driving pressure and flow

After injection: self-expanding bilateral growth
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Poighof max. opening defines the back-front of seismicity
Dahm et al., 2008




rate of maximal induced shear stress
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Regions of increasing shear stress have higher trigger potential.

Modeling confirms the behavior of front and back-front

2D, boundary element method (100 elements) considering theoretical
pressure distribution and elastic full space Dahm et al., 2008

distance to injection (m)

Fit to seismicity data

Estimated driving
stress gradient:
2 < g <5 MPa/km

distance to injection (m)
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The 1979 Krafla (Iceland) rifting episode:
example of lateral intrusions

Application to the Krafla data
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Fracture induced seismicity: conclusion

. Fracture model explains injection-, transition and post-
injection phase

. Bilateral asymmetric and unilateral growth is explained
. Pattern of induced seismicity correlates with regions of
increased shear (Coulomb) stress

. Front and back-front behaviour can be used to estimate
stress gradients, overpressure and viscosity

09/23/08

Case III

Slow natural intrusions

Hydrofrac in plexiglass




Hydrofrac in plexiglass
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Hydrofrac in plexiglass

Hydrofrac in plexiglass

31

Hydrofrac in plexiglass




Hydrofrac in plexiglass
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Hydrofrac in plexiglass

Hydrofrac in plexiglass
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Hydrofrac in plexiglass




Hydrofrac in plexiglass

Example A:
Izu Bonin Magma
Intrusion Apr 2000
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A magma intrusion process
inferred from hypocenter
migration of earthquake
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Penny-shaped hypocenter pattern
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Penny-shaped hypocenter pattern

day from 18 April 98
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strongest events occur at the end of the sequence

maximal magnitudes ~ M 4.5
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Example B:
Earthquake swarm
NW-Bohemia 2000

Xx events between ...

Max M =

Hypo depth =~ 8 km

42

“Weekly” migration of hypocenters
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strongest events at the end of the sequence
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“scaling relations” of intrusion-induced seismicity ? Elhptlca(l’ crack devcyelops under mixed loading
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Summary of intrusion-induced
seismicity
1. Fluid-filled fractures (non-buoyant) grow towards
circular or elliptical final shape Case IV
2. The growth is episodic and discontinuous when the
overpressure is small )
3. The mechanics of growth seems to be similar for Gas field depletion
magma-dikes and for hydro-fractures
4. Earthquake magnitude scales with size of intrusion;
largest events occur at the end of intrusion
47




Trigger potential oytside the reservoir
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modified after Segall et al., 1998

«Can distant earthquakes be triggered and what is mechanical evidence?
«Can seismic trigger potential be estimated ?

Seismicity close to gas field in N Germany

and The Netherlands
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Stress change from depletion of crack-reservoir

Was the Mw 4.4 Rotenburg 2004 earthquake
) related to gas-recovery?
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Modeling is based on a 3D Boundary Element method (in prep.)
Equivalent solutions are obtained from the Geertsma model (e.g.

Segall, 1998)




Predicted subsidence at Rotenburg fields
Advantage of 3D-BEM method . o5 o gw;
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shear stress change on fault: vertical section
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Conclusions

1. The Rotenburg earthquake occurred on a fault patch
where shear and Coulomb stress increased as a result
of field depletion

2. The stress increase was in the range of 0.1 MPa

3. The earthquake ruptured about 70% of the patch of
increased stress on the fault, and no rupture outside
the patch is indicated

Overall summary

1. Induced and triggered seismicity has many causes
and is often difficult to distinguish from natural
seismicity

2. Itis not sufficient to correlate a loading cycle with
earthquake statistical parameter. A time dependent
stress model is needed to strengthen the trigger
hypothesis

3. Natural fluid-induced seismicity can be used to study
the intrusion parameter

4. Many tools are needed to study triggered and
induced seismicity (relative location and depth
studies, source mechanism, modeling of fluid
diffusion, intrusion, depletion related stress changes)
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