

1965-34

9th Workshop on Three-Dimensional Modelling of Seismic Waves Generation, Propagation and their Inversion

22 September - 4 October, 2008

Relative location, relative moment tensor inversion.

Torsten Dahm Institut für Geophysik Universität Hamburg Germany

torsten.dahm@zmaw.de torsten.dahm@zmaw.de

Relative location, relative moment tensor inversion

ICTP Course 2008 Trieste

Torsten Dahm

torsten.dahm@zmaw.de

Institut für Geophysik, Universität Hamburg contributions from: Th. Fischer, J. Reinhardt

Earthquake swarms & cluster

700 clustered events from the 1997 Bohemian massive earthquake swarm (see Dahm, Sileny and Horalek, 2000).

A. Precise earthquake location

The simultaneous location of clustered earthquakes and multiplets increases the location accuracy and reduces model-dependent bias.

Single source location (Geigers method)

Equation for one observation at $\vec{X} = (X, Y, Z)$:

$$t = t^{obs} = h + T(\vec{x}, \vec{X}, velocity)$$

linearizing around starting model $\vec{m0}$ (summ. conv.)

$$t^{\text{obs}} - t^{\text{theo}}(\vec{m0}) \approx \frac{\partial t}{\partial m_k}(m0_k - m_k) = \frac{\partial t}{\partial m_k}\Delta m_k$$

- with t : arrival time
 - h : origin time
 - T : travel time
 - $\vec{x} = (x, y, z)$: location vector
- $\vec{m} = (h, X x, Y y, Z z)$: model vector

Dahm, ICTP 2006 II – p.4/33

master event location

sources far-field equation (*i*=slave event, *j*=master event):

$$t_i^{\text{obs}} - t_j^{\text{obs}} = (h_i - h_j) + \frac{\vec{n}}{c}(\vec{x}_i - \vec{x}_j)$$

with

 \vec{n} : unit vector of ray to \vec{X} c : velocity at source

Dahm, ICTP 2006 II - p.5/33

master event location

- relative locations with high accuracy, but absolute location is not improved
- Iocation of master event is not changed
- high precision time-difference measurements when waveforms are similar
- a minor influence of the unmodelled unknown structure far away from the cluster
- systematic time errors at a station have no effect on the results

Double difference method

Double difference method (linearized)

The parallel ray assumption is relaxed. For each observation at \vec{X} :

$$(t_{(i)}^{\text{obs}} - t_{(j)}^{\text{obs}}) - (t_{(i)}^{\text{theo}} - t_{(j)}^{\text{theo}}) = \frac{\partial t^{(i)}}{\partial m_k} \Delta m_k^{(i)} - \frac{\partial t^{(j)}}{\partial m_k} \Delta m_k^{(j)}$$

- advantage : disadvantage :
- : bended rays, mixed input data
 - sadvantage : nonlinear, iterative scheme accurate theoretical traveltime differences

(see Waldhauser and Ellsworth, BSSA, 2000)

Double difference method

Relocation of 28 events from the Berkeley cluster

(Waldhauser and Ellsworth, BSSA, 2000)

Application to 1997 Vogtland swarm

- WEBNET waveform data available (Horálek, pers. comm.)
- Precise estimate of time shift for best coherence
 - Arrival time differences with high accuracy
 - Easy amplitude picking

A. accurate time difference measurment

ference measurements when waveforms are similar (correlation approach)

B. multiplet analysis

Coherence analysis (Maurer and Deichmann, 1995) with events of the 1997 earthquake swarm beneath Novy Kostel

- 37 % of the events
 (274) grouped in 14
 multiplets
- relative time differences extracted
- correlation coefficients calculated

C. high precision relocation

D. Precise source mechanisms

For clustered earthquakes and for multiplets a relative amplitude inversion (relative moment tensor) is possible and allows to analyse weak events. Having accurate locations and source mechanism is useful for the identification of micro-faults and stress inversion

relative moment tensor inverson

mechanism is known

relative moment tensor inversion

- moment tensors relative to the tensor of a master event, but absolute tensors (moments) are not improved
- moment tensor of the master event is not improved
- relative amplitudes are measured with high precision when waveforms are similar
- unmodelled unknown structure far away from the cluster has a minor influence on the results
- systematic station effects have no impact on the results

assumptions

- the mechanism of the reference event is well known a priori
- events are narrow clustered and seismograms are lowpass filtered (temporal and spatial point source, all events occur within approx. one wavelength from the master event)
- used frequency range below the corner frequency of the largest studied event of the cluster
- isolated, non-interfering body-waves are used

Estimation of Moment Tensors

Relative moment tensor inversion (Dahm, 1996)

- automated picking of P- and S-phase amplitudes
- 522 moment tensors inverted
- Classification with multiplets possible

Plane with en echelon faults

body-wave approach

for each ray (P, SV, SH):
$$\tilde{u} = h_k m_k I$$
,

with

and similar for SH-waves.

(e.g. Aki & Richards, 1982)

used convention

take-off angle: α azimuth angle: φ moment tensor: $m_1 = \frac{1}{2}(M_{22} - M_{11})$ $m_2 = M_{12}$ $m_3 = M_{13}$ $m_4 = M_{23}$ $m_5 = \frac{1}{3}(0.5(M_{22} - M_{11}) - M_{33})$ $m_6 = \frac{1}{3}(M_{11} + M_{22} + M_{33})$

what is different?

the "Green function I" is a scalar for each body-wave mode

 \Longrightarrow it can be eliminated when using two earthquakes from the same source region

$$\tilde{u}^{(1)} = h_k^{(1)} m_k^{(1)} I$$
$$I = \frac{\tilde{u}^{(2)}}{h_k^{(2)} m_k^{(2)}}$$

leading to

$$\tilde{u}^{(2)} h_l^{(1)} m_l^{(1)} = \tilde{u}^{(1)} h_k^{(2)} m_k^{(2)} [data] = [vector]^T [unknown model]$$

additional polarity constraints

$$\tilde{u}^{(2)} h_l^{(1)} m_l^{(1)} = \tilde{u}^{(1)} h_k^{(2)} m_k^{(2)}$$
$$0 \leq \frac{\tilde{u}^{(2)}}{|\tilde{u}^{(2)}|} h_k^{(2)} m_k^{(2)}$$

$$\begin{bmatrix} data \end{bmatrix} = \begin{bmatrix} vector \end{bmatrix}^T \begin{bmatrix} unknown model \end{bmatrix} \\ 0 \leq polarity \cdot \begin{bmatrix} geometry \end{bmatrix}^T \begin{bmatrix} unknown model \end{bmatrix}$$

relative method without master

From

$$\tilde{u}^{(2)} h_l^{(1)} m_l^{(1)} = \tilde{u}^{(1)} h_k^{(2)} m_k^{(2)}$$

we formally write

formally write $0 = -\tilde{u}^{(2)} h_l^{(1)} m_l^{(1)} + \tilde{u}^{(1)} h_k^{(2)} m_k^{(2)}$ $\begin{bmatrix} 0 \\ \text{const} \end{bmatrix} = \begin{bmatrix} -\tilde{u}^{(2)} h_1^{(1)} & \dots & -\tilde{u}^{(2)} h_6^{(2)} & \tilde{u}^{(1)} h_1^{(2)} & \dots & \tilde{u}^{(1)} h_6^{(2)} \\ 1 & \dots & 1 & 1 & \dots & 1 \end{bmatrix} \begin{bmatrix} m_1^{(1)} \\ m_2^{(1)} \\ \vdots \\ m_6^{(1)} \\ m_1^{(2)} \\ m_2^{(2)} \\ \vdots \\ m_6^{(2)} \end{bmatrix}$

Hindu Kush deep cluster

Dahm, ICTP 2006 II - p.25/3:

record section for event No 1

data processing

- 11 events with max. distance of 35 km.
- band-pass filter between 0.05 Hz and 0.1 Hz; wavelength between $\approx 80 \, km$ (P) and $\approx 46 \, km$ (S)
- P-, S-, pP-, sP-, PP-phases selected where no interference
- peak amplitudes measured

measuring amplitudes

Dahm, ICTP 2006 II - p.28/33

inversion results

programs and directories

directory example

- 1. *relref.exe*: relative inversion with reference mechanism
- 2. *relrpos.exe*: relative inversion without reference mechanism
- 3. *syndat4relef.f*: generate synthetic input to test geometry
- 4. *pltbeachball.cmd*: plot solutions in comparison to Harvad CMT

relref.f

Input: *relref.inp*

Output:

- 1. relref.out: full listing of result
- 2. *result.par*: short version of result for plotting
- 3. *relray.pola*: polarities used

4. ...

description of input file

.00E+00 .0000

		wt	cmp	azi	toff /	u(i,j)	, i=	1,ie	V			
-	1.00	1	23.062	102.6	30		AAK	Ρ	0.0	000	0.0	000
0	-7.9	5220000	000000e+0	3 25	.644	98.99	97		0.0000	1.000€	≥+00	-1
0	-1.9	2831000	000000e+0	5 23	.072	99.81	.7		0.0000	1.000€	≥+00	-1
1	0.0	00000000	000000e+0	0 21	.440	100.23	8 4		0.0000	1.000€	≥+00	0
0	-7.2	7730000	000000e+0	4 23	.992	106.03	9		0.0000	1.000€	≥+00	-1

•••••

Reference Mechanisms

1 0 -0.76 0.07 0.00 -0.63 0.12 0.76 0	1 0	-0.76	0.07	0.00	-0.63	0.12	0.76	Ο.
---------------------------------------	-----	-------	------	------	-------	------	------	----

.

practical

- 1. reproduce results using relref.exe and relrpos.exe
- 2. introduce deviatoric source constraint
- 3. introduce polarity constraint
- 4. use only event 1 as reference event (relref.exe)
- 5. change moment tensor of reference event