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Part I:

* Approach;

» Lateral boundary conditions;

+ Gravity-wave coupling/ time differencing;
» Nonhydrostatic effects;

- Advection:

» Energy transformations kinetic to potential



"Philosophy” of the Eta numerical design:
"Arakawa approach”

Attention focused
on the physical properties
of the finite difference analog
of the continuous equations

* Formal, Taylor series type accuracy:
not emphasized,

* Help not expected from merely increase
in resolution



"Physical properties..."?

Properties (e.g., kinetic energy, enstrophy) defined
using grid point values as model grid box averages /

as opposed to their being values of continuous
and differentiable functions at grid points

(Note "physics”: done on grid boxes | 1)

Arakawa, at early times:

» Conservation of energy and enstrophy;
* Avoidance of computational modes;
- Dispersion and phase speed;



Akio Arakawa:

physically important features

Understand/ solve issues by looking at schemes for the
minimal set of ferms that describe the problem



Akio Arakawa:




The Eta (as mostly used up to now) is a regional
model:
Lateral boundary conditions (LBCs) are needed



There is now also a global Eta Model:

Zhang, H., and M. Rancic: 2007: A global Eta model
on quasi-uniform grids. Quart. |. Roy. Meteor. Soc.,

133, 517-528.
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Eta dynamics: What is being done ?
, defined only along the outer boundary
row,
, on the B/E grid: forward-backward scheme that

(1) avoids the time computational mode of the leapfrog scheme, and is
neutral with time steps twice leapfrog;

(2) modified to enable propagation of a height point perturbation to its
nearest-neighbor height points/suppress space computational mode;

- Horizontal advection scheme that conserves
, on the B/E grid, in space differencing (Janji¢ 1984);

» Conservation of
, in space differencing;

- The eta vertical coordinate,
of the
pressure-gradient force (PGF);



* Lateral boundary
condition scheme(s)

The problem:
Considered already in
Charney (1962):

Linearized shallow-water
egs., one space dimension,
characteristics;

"at least two conditions have
to be specified at inflow
points and one condition at
outflow".

Sundstrom (1973);

Davies (1976): "boundary
relaxation scheme"

Almost all LA models:
Davies (“relaxation LBCs"):

Outside row: specify all variables
Row 1 grid line inside: specify, e.qg.,
0.875*Yyu + 0.125*Y

Row 2 grid lines inside:
0.750* Yy + 0.250*Y um



* Lateral boundary
condition scheme(s)

The problem:
Considered already in
Charney (1962):

Linearized shallow-water
egs., one space dimension,
characteristics;

“at least two conditions have
to be specified at inflow
points and one condition at
outflow".

Sundstrom (1973);

Davies (1976): "boundary
relaxation scheme”

Res. Actinities ..., 1999 :

A TEST OF THE ETA LATERAL

Thomas L. Black, Geoffrey
U.S. National Centers for Environms

Opver the years considerable degree of concern
has been expressed by various investigators
regarding the non well-posedness of the one-way
boundary conditions of hydrostatic limited-area
models. To aggravate the feelings, it is perhaps
universally considered that “A common and
essential ingredient of limited-area strategies is
the introduction of an adjustment region
immediately adjacent to the lateral boundaries,
where one or both of the techniques of blending
and diffusion, either explicit or implicit, are
applied” (Coté et al. 1998). As a summary, Coté
et al. cite as many as ten papers stating that they
“all indicate that lateral boundary condition
error can, depending upon the meteorological
situation, importantly contribute to the total
error.” This assessment seems to have played a
crucial role in their favoring a global variable
resolution as opposed to a limited-area strategy.



Warner, T. T., R. A. Peterson, and R. E. Treadon, 1997: A tutorial on lateral

boundary conditions as a basic and potentially serious limitation

e —

to regional numerlcal weather prediction. Bull. Amer. Meteor.

e ———————————————————————————— e

Soc., 78, 2599-2617.

(Emphasis FM)



The €ta LBC scheme :

L®Cs neededt ov\ov\g
n single outer bndry line

o} gnd palnts

(as required by the mathematical nature of the
initial-boundary value problem we are solving)



The scheme (Mesinger 1977)
+ At the inflow boundary points, all variables prescribed;

+ At the outflow boundary points, tangential velocity
extrapolated from the inside (characteristicsl!);

* The row of grid points next to the boundary row,
"buffer row"; variables four-point averaged (this couples
the gravity waves on two C-subgrids of the E-grid, will be

explained as the next item)

lll

Thus: No "boundary relaxation



Lateral boundary conditions
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Figure 4: A section of the then operational 32-km Eta 48-h sea level pressure forecast, valid at 1200 UTC
17 October 1998, top panel; same except for a run over a smaller domain, done using the operational
forecast to supply its boundary conditions, bottom panel. Boundaries of the plots shown are the outermost
boundaries of the smaller domain, thus, in the bottom panel, all of the forecast domain of the nested run is

shown.
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"limitation":

Near inflow boundaries, LA model cannot do better -
it can only do worse - that its driver model



- - -

° GrGViTY-WGVC l;_ Reviews of various discretization methods ap-

. & plied to atmospheric models include Mesinger and
coupling scheme = Arakawa (1976), GARP (1979), ECMWF (1984),
€ WMO (1984), Arakawa (1988) and Bourke (1988)
for finite-difference, finite-element and spectral
¥ methods and Staniforth and Co6té (1991) for the

S semi-Lagrangian method. |

<€

7.2 Horizontal computational mode and distortion
of dispersion relations

Among problems in discretizing the basic govern-
ing equations, comButa,tional modes and computa-
tional distortion of the dispersion relations in a dis-
crete system require special attention in data as-
similation. Here a computational mode refers to a
mode in the solution of discrete equations that has
no counterpart in the solution of the original contin-
uous equations. The concept of the order of accu-
racy, therefore, which is based on the Taylor expan-
sion of the residual when the solution of the contin-
uous system is substituted into the discrete system,
is not relevant for the existence or non-existence of
a computational mode.
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/% g sepavation of
solulilons problem

WY b wr h wy h wv

s A (Two C-subgrids)
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Mesinguy

iy . "The modification”
b e & Pointed out (1973) that

. . divergence equation
W w  h  w ok can be used just as well;

result is the same as
when using the auxiliary

* Rysitigny velocity points
V%\Q‘}ﬁ'ﬁ:’ \‘pﬁhia

h wWv h



The method, 1973, applied to a number of time
differencing schemes;

In Mesinger 1974:
applied to the "forward-backward" scheme



Linearized
shallow-water
equations:

The fovward- backwavrd sehewme :
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Elimination of u,v from pure
gravity-wave system leads to
the wave equation, (5.6):

(From Mesinger, Arakawa, 1976)

9%h 9% h

g _HZ =
g ax2

We can perform the same elimination for each of the
finite difference schemes, forward-backward and leapfrog.
 The forward-backward and space-centered approxi-
mation to (5.5) is

n-i-L_ n

VT, + g 2Ax ’
” | (5.7)
_hi:_;ﬁ + H ufi! - uf! =0 |
1 24x ’

We now substract from the second of these equations
an analogous equation for time level n—1 instead of #,
divide the resulting equation by 4¢, and, finally, eliminate
all u values from it using the first of Eqs. (5.7), written
for space points j + 1 and j—1 instead of j. We obtain

1 }ij‘n%l’z _9 h}n + ,.,h.jﬁ_, )

(24x)?

W on + nfT
(41)*

- gH =0.(5.8)

This is a finite difference analogue of the wave equation
(5.6). Note that although each of the two equations
(5.7) is only of the first order of accuracy in time, the
wave equation analogue equivalent to (5.7) is seen to be
of the second order of accuracy.



If we use a leapfrog and space-centered approximation
to (5.5), and follow an elimination procedure like that
used in deriving (5.8), we obtain

hjn+1'“ 2/2;1._I + hjn_3
(241)?

—

S B -1 (5.9)
o hjn-;-z—Z/z;z -+ /zf_g

= 0.
(24x)*

This also is an analogue to the wave equation (5.6) of
second-order accuracy. However, in (5.8) the second
time derivative was approximated using values at three
consecutive time levels; in (5.9) it is approximated by
values at every second time level only, that is, at time
intervals 24¢. Thus, while the time step required for
linear stability with the leapfrog scheme was half that
with the forward-backward scheme, (5.9) shows that
we can omit the variables at every second time step, and
thus achieve the same computation time as using the
forward-backward scheme with double the time step.



Back to "modification”, gravity wave terms only:

on the lattice separation problem. If, for example, the forward—backward
time scheme is used, with the momentum equation integrated forward,

un+1 = " — gAlLSXhIz, Dn-l—l.: P o gAl'5y/’ln, (2)
instead of
P s P s HAZ‘[(SXLL + 8},1)) = gAtVf_h]”, (3)

the method results in the continuity equation (Mesinger, 1974):

3 1 n
hn—l-l _— h”' e HAIf (CSXI/L,“" 8))1)) = gAL‘(ZV%_h e Z‘Vih)] y (4)

Single-point perturbation spreads to both /1 and A points |

Extension to 3D: Janji¢, Contrib. Atmos. Phys., 1979



Eq. (4) (momentum eq. forward):

Following a pulse perturbation (height increase) at the
initial time, at time level 1 increase in height occurs
equal to 2/3 of the increase which occurs in
four second nearest points.

This is not ideal, but is a considerable improvement over
the situation with no change at the four nearest height
points |

In the code: continuity eq. is integrated forward.
"Historic reasons”. With this order, at time level 1 at

the four second nearest points a decrease occurs, in the

amount of 1/2 of the increase at the four nearest points |

Might well be worse? However:



Experiments recently (2006) made, doing 48 h forecasts,
with full physics, at two places, comparing

continuity eq. forward, vs momentum eq. forward

No visible difference !



Impact of
‘modification”

upper panel, used
lower panel, not used
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Time differencing sequence (“splitting” is used):

Adjustment stage: cont. eq. forward, momentum backward

Vertical advection over 2 adj. time steps
Repeat (except no vertical advection now, if done for two time steps)
Horizontal diffusion;

Horizontal advection over 2 adjustment time steps
(first forward then off-centered scheme, approx. neutral);

Some physics calls;
Repeat all of the above;

More physics calls;



Spllﬂ'lng used: %+(v-V)V=—kav—th,

(1)
9 V- (hv)=0.
ot
is replaced by ﬁ=_kav—th,
Jt 2) as the “adjustment step”,
M V- (hv)=0.
ot
and
%+ (vV-V)v =0, (3) as the “advection step”

Note that height advection v-Vh (corresponding to pressure in 3D case) is carried in the
adjustment step (or, stage), even though it represents advection!

This is a necessary, but not sufficient, condition for energy conservation in time differencing in
the energy transformation (“wa”) term (transformation between potential and kinetic energy).
Splitting however, as above, makes exact conservation of energy in time differencing not possible
( and amendment to Janjic et al. 1995, slides that follow).
Energy conservation in the Eta, in transformation between potential and kinetic energy is achieved
in space differencing.

Time differencing in the Eta: two steps of (2) are followed by one, over 2At, step of (3).



How is this figured out?

To achieve energy conservation in time differencing one needs to replicate what happens
in the continuous case. Energy conservation in the continuous case, still shallow water egs.

for simplicity:

?+(V-V)V _ _fkxv-gVh, (1)
A
Z—h+V-(hv)=O. (1.2)
4

To get the kinetic energy eq., multiply (1.1) by A v, multiply (1.2) by %v-v, and add,

zlhv-V+h(V-V)%v-v+%v-vv-(hv)=—ghv-Vh (4)

ot 2
For the potential energy eq., multiply (1.2) by gh,

I L o 4 ghV-(hv) =0 (5)

ot 2
Adding (4) and (5) we obtain

0 1 1 2 1 2
(v VE—oh )+ V- (=Vv-VAV)+ V- (eh“Vv)=0. (6)
é’t(Z 2g ) (2 ) (gh™v)

Thus, the total energy in a closed domain is conserved



For conservation in time differencing terms that went into one and the other
divergence term have to be available at the same time;

e Kinetic energy in horizontal advection (the 1st divergence term):

Formed of contributions of horizontal advection of v in (1.1), and mass divergence in (1.2)
Not available at the same time with the split-explicit approach;
cannot be done;

e Energy in transformations potential to kinetic (the 2nd divergence term):

Formed of the advection of h term on the right side of (2), coming from the pressure-gradient
force, and the mass divergence term of (3), coming from the continuity eq.;

Both are done in the adjustment stage with the splitting as in (2) and (3);
cancellation is thus possible if the two are done at the same time

However: they are done separately with the forward-backward scheme;

Thus, with the forward-backward scheme, cannot be done;

Time steps used for the adjustment stage very small;
not considered a serious weakness

(Eta at 10 km resolution is typically using adjustment time step of 20 s)



Nonhydrostatic option (a switch available),
Janjic et al. 2001:

(é)w)r+l/2 WT+1 —WT
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- Advection
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Janjic 1984:
* Arakawa-Lamb C grid scheme written in terms of u,,v,;

* write in terms of stream function values (at h points of
the right hand plot);

+ these same stream function values (square boxed in the
plot) can now be transformed to ug, v,



e horizontal adveclion scheme :
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Fig. 3.12. Mechanical analogies of the constraints imposed con the
non-linear energy cascade in the continuous case, in the case of the
C-grid energy and enstrophy conserving scheme, in the case of the
E-grid energy and enstrophy conserving scheme, and in the case of

the scheme due to Janjié (1984). . -
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Vertical advection: Centered Lorenz-Arakawa, e.g.:

g _ ol
i

E.g., Arakawa and Lamb (1977, "the green book", p. 222). Conserves
first and second moments (e.g., for u,v: momentum, kin. energy).

There is a problem however: false advection occurs from below
ground. Experiments in progress to replace the scheme with a
piecewise linear scheme of Mesinger and Jovic (2002)

(Code available: possible lab problem)



Advection of passive scalars (moisture, cloud water/ice):

In "standard” Eta:

Horizontal: Janjic (1997) “antidiffusion scheme”
Vertical: Piecewise-linear (Mesinger and Jovic 2002)



From Mesinger and Jovic :

j+1 j+2 j+3 j+4 j+5

Figure 1. An example of the Eta iterative slope adjustment algorithm. The initial distribution is
illustrated by the dashed line, with slopes in all five zones shown equal to zero. Slopes resulting
from the first iteration are shown by the solid lines. See text for additional detail.



Mesinger, F., and D. Jovic, 2002: The Eta slope adjustment:
Contender for an optimal steepening in a piecewise-linear advection
scheme? Comparison tests. NCEP Office Note 439, 29 pp (available
online at http://www .emc.ncep.noaa.gov/officenotes).

A comprehensive study of the Eta piecewise linear scheme

including comparison against five other schemes (three Van
Leer's, Janjic 1997, and Takacs 1985):



» Conservation of energy in transformation
kinetic to potential

» Evaluate generation of kinetic energy over the model's
v points;

+ Convert from the sum over v to a sum over T points;

» Identify the generation of potential energy terms in

the thermodynamic equation, use appropriate terms
from above

(2D: Mesinger 1984, 3D: Dushka Zupanski (then Gavrilov) in
Mesinger et al. 1988)
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