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Lecture 2:

� Maximum Likelihood Ensemble Filter (MLEF)

� Discussions of the results from the Lab exercises

� Results of more complex data assimilation experiemnts
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MLEF equations �� results

Analysis solution xa obtained by minimizing the cost function 

Analysis error covariance in ensemble subspace:

Analysis step:
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MLEF equations �� results

Forecast step:

xn
j
= Mn,n�1(xn�1

j )

Forecast error covariance calculated using ensemble perturbations:

Ensemble forecasts employing a non-linear model M
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Degrees of freedom (DOF) for signal (Rodgers 2000, Zupanski et al. 2007):

 - information matrix in ensemble subspace of dim Nens x NensA = ZTZ A

Errors are assumed Gaussian in these measures.

�i
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- eigenvalues of A

MLEF equations � results
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Where to find more results

../MLEF_test/work - this is the directory where MLEF works
      (files are not saved here)

You can do the following in this directory:
ls -ltr *.err (to see if there are error files with some error
messages)

Also, you can see the outputs of each executable. These outputs
have names like this:
name_of_executable.out
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Where to find more results

../MLEF_test - this is the directory where MLEF results are saved

Subdirectory current includes some summary results. Check these files:
rms_analysis (analysis errors, listed for all cycles)
rms_background (background errors of all cycles)
rms_noobs (rms errors of the experiment without data assimilation)
These rms errors are also plotted in the file rms.gif
evd_A.${icycle} (eigenvalues of the information matrix A)

Subdirectories cycle${icycle} include results of specific data assimilation
cycles. Check these files:
covPa.gif (analysis error covariance)
covPa.gif (forecast error covariance)
state.gif (xa, xb and xnoobs plotted in each grid point. There are 81 grid points)
state_error.gif (errors of xa, xb and xnoobs in each grid point)



MLEF vs  3d-var
model state xtrue , xa, and xnoobs

(Burgers model results from the Lab exercise)

MLEF analysis becomes almost identical
to the truth after first several cycles!

MLEF 3d-var

3d-var analysis does not
improve with time.





MLEF vs  3d-var
(P

a
)

MLEF

Pa is flow-dependent

3d-var

Pa is NOT flow-dependent
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� Low-dimensional models (state vector dimension up to 104)

� Korteweg de Vries - Burgers (KdVB) model - solitons

� Burgers  model - shock wave, advection, diffusion (our lab exercise)

� Shallow-water models - Rossby-Haurwitz, mountain interaction, gravity waves

� NASA GEOS-5 Single-Column Model - precipitation, moisture

� Lorenz models (3-variable (1963) and 40-variable (1996)) - nonlinear/chaotic regimes

� High-dimensional, complex, multi-scale models (state vector dimension of 105-107)

� Weather Research and Forecasting (WRF) regional model - hurricanes, precipitation,
clouds

� NASA GEOS-5 Atmospheric Global Circulation Model - precipitation, moisture
(Smoother)

� NASA Global Cumulus Ensemble (GCE) model - cloud microphysics

� NCEP GFS global atmospheric model  (NOAA operational weather model)

� RAMS (Colorado State University) as a Large Eddy Simulation (LES) regional model -
arctic boundary layer clouds

� Parameterized Chemistry Transport Model (PCTM) - carbon

� Observations

� NOAA NCEP operational meteorological observations (conventional, satellite, radar)

� NASA forward operators for TRMM and future Global Precipitation Mission (GPM)

satellites

� NCAR upper-air and surface observations

� Ice and liquid water path - SHEEBA experiment in Arctic

� We have not applied the MLEF to the Eta model yet, but we plan to do it in
the near future

Applications of the MLEF



Some results from complex MLEF
applications
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Assimilation of NCEP conventional observations
MLEF+WRF

Comparison between the MLEF and the GSI (Gridpoint Statistical Interpolation). Results of 3-h
forecasts after data assimilation (valid at 1800 Z 11 AUG 2007) are shown for relative humidity.

Generally, MLEF is in better
agreement with the
verification (high resolution
NCEP operational analysis)
than the CONTROL GSI.
There is a slight
degradation at the north-
eastern corner of the
domain.

VERIFICATION (12km)MLEF + 3h FCST (30km)GSI + 3h FCST (30km)
CONTROL

Flow-dependent
information measure
indicates more information
over Texas, Oklahoma
and the Gulf of Mexico,
where there is more
disagreement between
different forecasts.

Deg. of Freedom for Signal



Assimilation of conventional observations for typhoon Megi
MLEF+WRF

Typhoon is always located
in the area where the
pressure was reduced due
to data assimilation (blue).
Note switch in the blue/red
dipole in cycle 4, when Megi
makes a turn towards east.

Differences in surface pressure (in hPa) between the experiments with and without data
assimilation. Results for data assimilation cycles 2-7 are shown (from 1200 UTC 17 Aug 2004 to
1800 UTC 18 Aug 2004). Black circle indicates typhoon location.

Courtesy of Hyun Hee Kim



More results will be presented by Stephane
Vannitsem at the Conference (on Friday)
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