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Lecture 1:

! What is data assimilation and why is it important?

! Ensemble Data Assimilation

Lecture 2:

! Maximum Likelihood Ensemble Filter (MLEF)

! Examples of data assimilation results
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NOTE

If there is enough interest, we will perform simple

data assimilation experiments, using Maximum

Likelihood Ensemble Filter (MLEF) method and

Burgers model, in one of the available Computer

Labs.

Interested participants, please sign-in at the end

of this class.

Suggested time for Lab exercises is today or

Thursday after lunch break. Please write your

suggestions next to your name when signing.



Websites

If you would like to perform the exercise on your own,

downloaded the MLEF algorithm, via anonymous ftp, from the

following location:

http://www.cira.colostate.edu/projects/ensemble

ftp://ftp.cira.colostate.edu/Zupanski/ICTP_Lecture_2008/mlef-V1.2.tar

More information about the MLEF can be found at
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Then, do the following (on a Linux computer or laptop):

tar -xvf mlef-V1.2.tar

cd mlef-V1.2

and read the text file called “README” for further instructions



Questions

Please feel free to ask questions during and after my

presentations (until Saturday, when I will be leaving).

You are also welcome to send me an e-mail.
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What is Data Assimilation?

! Data assimilation (DA) started as Atmospheric DA in 1960s-

1970s (you might have heard of Gandin, who was a pioneer

in the atmospheric DA).

! Initially, atmospheric DA was used to define “objective” initial

conditions for Numerical Weather Predictions (NWP)

models. In these early days, the term “objective analysis”

was used.

! Today, DA is used to define “optimal” initial conditions for

NWP, climate, hydrological, oceanic, land, canopy, pollution

transport and other bio-geophysical models (it is not only

atmospheric DA anymore).

! Advanced DA methods, available today, can also estimate

and correct model errors (model error estimation) and

define optimal empirical parameters (parameter estimation).
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What is Data Assimilation?
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New (posterior) model state fits the observations better than the old (prior)

model state: Data Assimilation (DA) “optimally” combines observations and

a dynamical forecast model in order to improve estimates of the current

state (analysis) and the future state (forecast) of a dynamical system of

interest (e.g., atmosphere, ocean, land).
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How is this done?

Step 1: Define forecast model time evolution equation:

- Dynamical model for model state evolution (e.g., Eta model)M

- Model state vector of dim Nstate

w - Model error vector of dim Nstate

There are several steps:

n - Time step index (denoting model time steps)

x
n
= M

n,n!1
(x

n!1
) + w

n

Step 2: Define time evolution equation for the observations:

yk = Hk (xk ) + ! k

y - Observations vector of dim Nobs

H

!

- Observation operator

- Observation error

k - Time step index (denoting observation  times)



In order to proceed with the next step, we assume that p(x) and p(y|x) are known.

Typical assumption is that both PDFs are Gaussian and are mutually independent, thus

we can write

p(x) ~ exp !
1

2
x ! xb( )

T
Pf

!1
x ! xb( )
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*
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PDF = p x y( ) =
p(y x)p(x)

p(y)

Step 3: Combine the two equations in the probability space, by employing the

Bayesian conditional Probability Density Function (PDF):

Step 4: Finally, obtain the minimum variance (mean) or maximum likelihood

(mode) solution by minimizing the following cost function J

J =
1

2
[x ! xb ]

T
Pf
-1
[x ! xb ]+

1

2
[H[M (x)]! y]

T
R

!1
[H[M (x)]! y]

 Pf is forecast error covariance matrix

(prescribed or calculated)

R is observation

error covariance

matrix (prescribed)
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xmode xmean

x

p(x)

Non-Gaussian

xmode = xmean

x

p(x)

Gaussian

MEAN vs. MODE

For Gaussian PDFs mean=mode, thus the solution is easy to obtain. Or is it?

Minimum variance estimate= Maximum likelihood estimate!



Even under the Gaussian error assumption, there are different ways to

obtain the optimal solution (analysis):

1. Variational methods

- 3d-var

- 4d-var

2. Kalman Filter - like methods

- Classical Kalman Filter (KF)

- Extended Kalman Filter (EKF)

- Ensemble Kalman Filter (EnKF)

The most significant difference between the two groups of DA methods is in

the way how Pf is defined:

1. In variational methods Pf is prescribed.

2. In KF-like methods, Pf  is evolving in time according to model dynamics.
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Example 1:  Fronts

Example 2: Hurricanes

(From Whitaker et al., THORPEX web-page)

Why is it important to have time evolving Pf ?

Ensemble methods produce realistic Pf. Nevertheless,  covariance

localization is sometimes needed to eliminate spurious long-distance

correlations (covariance localization was applied in this example).



More specifically

" 3d-var method employs a prescribed forecast error

covariance and never evolves it in time.

" 4d-var method evolves the forecast error covariance in time,

but only until the end of a data assimilation interval. In each new

data assimilation interval it starts with the same, prescribed

forecast error covariance.

" Kalman Filter (KF) Does evolve the forecast error covariance

in time and from one data assimilation cycle to another, but it is

computationally too expensive for applications to complex

atmospheric models.

Ensemble data assimilation (e.g., EnKF) is a practical alternative

to KF, applicable to most complex atmospheric models (Eta,

WRF).

!

A bonus benefit: The ensemble data assimilation is easier to deal

with, since we do not need to define Pf ; the ensembles will do it

for us.

!



More reasons for ensemble data assimilation
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" Ensemble data assimilation provides initial ensemble

perturbations for ensemble forecasting.

"There is no need to develop adjoint models.

" As will be shown in Lecture 2, the ensemble data

assimilation methods can deal with non-linear and

discontinuous (on/off) functions better than variational

methods



There are many different versions of EnKF

! Monte Carlo EnKF (Evensen 1994; 2003)

! EnKF (Houtekamer et al. 1995; 2005; First operational version)

! Hybrid EnKF (Hamill and Snyder 2000)

! EAKF (Anderson 2001)

! ETKF (Bishop et al. 2001)

! EnSRF (Whitaker and Hamill 2002)

! LEKF (Ott et al. 2004)

! LETKF (Hunt et al. 2007)

! SEEK filter (Pham et al. 1998)

!MLEF (Zupanski 2005; Zupanski and Zupanski 2006)

Minimum variance

solution

Maximum

likelihood solution

Why maximum likelihood solution? Because it is more adequate for non-

linear and discontinuous models (Zupanski et al. 2008) and for problems

involving non-Gaussian PDFs (e.g., Fletcher and Zupanski 2006).
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- Optimal estimate of x (analysis)

 Kalman Kalman filter solutionfilter solution

 
xa = xb + Pf H

T
(HPf H

T
+ R)

!1
y ! H (xb )[ ]

Analysis step:

x
b - Background (prior) estimate of x 

 
Pa = [I ! Pf H

T
(HPf H

T
+ R)

!1
H ]Pf = I ! KH( )Pf

P
a - Analysis (posterior) error covariance matrix (Nstate x Nstate) 

Forecast step:

x
0
= x

a
;

 
Pf = MPa M

T
+Q - Update of forecast error covariance

K - Kalman gain matrix (Nstate x Nobs)

x
n
= M

n,n!1
(x

n!1
) + w

n Often neglected



Ensemble Kalman Filter (EnKF) solution

EnKF was first introduced by Evensen (1994) as a Monte Carlo filter.

Analysis solution defined for each ensemble member i:
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e
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Mean analysis solution:
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e
H

T
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e
H

T
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e
)
!1
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Analysis error covariance in ensemble subspace:

Analysis step:

 
p

a
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i
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a

Analysis ensemble

perturbations:
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Equations following Evensen (2003)
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Ensemble Kalman Filter (EnKF) solution

Forecast step:

x
n

j
= M

n,n!1
(x

n!1

j
)

Forecast error covariance calculated using ensemble perturbations:

Ensemble forecasts employing a non-linear model M

  
pf
i
= M (xa

i ) ! M (xa )
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Non-linear forecast perturbations
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MLEF solution

Analysis solution xa obtained by minimizing the cost function 

Analysis error covariance in ensemble subspace:

Analysis step:
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1 2
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1/2
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MLEF solution

Forecast step:

x
n

j
= M

n,n!1
(x

n!1

j
)

Forecast error covariance calculated using ensemble perturbations:

Ensemble forecasts employing a non-linear model M

  
pf
i
= M (xa + pa

i ) ! M (xa )
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Non-linear ensemble forecast perturbations
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Connections between MLEF, KF and 3d-var
(Zupanski et al. 2007)

! MLEF=KF, if PDFs are Gaussian, observation operator H is linear and

differentiable and the MLEF uses a full-rank Pf (Full-rank means

Nens=Nstate).

!MLEF=3d-var, if observation operator is differentiable and Pf is full-

rank, but not updated from one data assimilation cycle to another. In

such case the same cost function is minimized:

  
x = xb +!Pf H

T
(HPf

T
H

T
+ R)

"1
[ y " H (xb )]

 
J(x) =

1

2
[x ! xb ]

T
Pf

!1
[x ! xb ]+

1

2
[ y ! H (x)]

T
R

!1
[ y ! H (x)]

; for "=1
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MLEF is also applicable to Non-Gaussian PDFs (e.g., Fletcher and

Zupanski 2006).

MLEF is also applicable to non-differentiable observation operators

(e.g., Zupanski et al. 2008).



Current status of EnKF applications

!EnKF is operational in Canada, since January 2005 (Houtekamer et al.

2005).

! Pseudo operational EnKF at University of Washington (Torn and Hakim

2008).

! EnKF is better than 3d-var (Meng and Zhang 2008; Whitaker et al., 2008).

! Superior performance in application to non-hydrostatic, cloud resolving

models (Caya et al. 2005; Xue et al. 2006; Carrio et al. 2008).

! Superior performance in applications to non-linear and discontinuous (with

on/off switches) models (Zupanski et al. 2008).

! Superior performance for ocean (Keppenne et al. 2008), climate (Karspeck

and Anderson 2007), and soil hydrology models (Reichle et al. 2007).

Theoretical advantages of ensemble-based DA methods are getting

confirmed in an increasing number of practical applications.
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There is still many possibilities for further improvements of the ensemble

based DA methods.. For example, covariance localization is one of the

critical areas that need further improvements.



A hint on how to run the MLEF algorithm
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