

1967-8

Advanced School in High Performance and GRID Computing

3 - 14 November 2008

Modern architectures for HPC computation.

COZZINI Stefano CNR-INFM Democritos c/o SISSA via Beirut 2-4 34014 Trieste ITALY Advanced School in High Performance and GRID Computing

MODERN ARCHITECTURES FOR HPC COMPUTATION

Stefano Cozzini

CNR-INFM DEMOCRITOS, Trieste

ICTP HPC School 2008 – Trieste, Italy - November 03-14, 2008

Introduction

- The goal of this lecture is to introduce some basic understanding of how the CPU and memory work together to perform a calculation.
- Classify the various parts of the computer into a hierarchy of performance based upon device response time.
- Relate the physical limitations of the hardware to the various performances of a type of computational operation.
- Point out possible bottle necks in calculations can occur and how this may be avoided.
 November 5, 2008

standard architecture

- Characteristics:
 - more than one CPU !
 - 64 bit adress space

standard modern architecture

- All data communication from one CPU to another must travel over the same bus used to communicate with the Northbridge.
- All communication with RAM must pass through the Northbridge.
- Communication between PCI-E + A
 a CPU and a device attached to the Southbridge is routed
 through the Northbridge.

more expensive architecture

 Northbridge can be connected to a number of external memory controllers (in the following example, four of them).

INCREASE IN BANDWIDTH TOWARD MEMORY November 5, 2008

Another kind of architecture..

Integrated memory controllers (AMD style)

NUMA ARCHITECTURE !

AMD/Intel XEON comparison

AMD/Intel XEON comparison

which kind of CPUS ?

• MULTICORE !!

Multiple, externally visible processors on a single die where the processors have independent control-flow, separate internal state and no critical resource sharing

Evolutionary configurable architecture

Scalar plus many core for highly threaded workloads

Multi-core array

CMP with ~10 cores

Dual core

Symmetric multithreading

November 5, 2008

Many-core array

- CMP with 10s-100s low power cores
- Scalar cores
- Capable of TFLOPS+
- Full System-on-Chip
- Servers, workstations, embedded...

What within a core ?

- CPU contains Control Unit: processes instructions and ALU: math and logic operations
- At each cycle the CPU fetches both data and a description of what operations need to be performed and stores them in registers.
- On modern CPU there are many other stuff:
 - Pipelined functional units
 - Superscalar execution
 - Floating point instruction set extensions

Pipelined Functional Units

- For the processors in most modern parallel machines, the circuitry on the chip which performs a given type of operation on operands in registers is known as a *functional unit*.
- Most integer and floating point functional units are pipelined, meaning that they can have multiple independent executions of the same instruction placed in a queue. The idea is that after an initial startup latency, the functional unit should be able to generate one result every clock period (CP).
- Each stage of a pipelined operation can be working simultaneously on different sets of operands.

modern processors are superscalar !

- Processors which have multiple functional units which can operate concurrently are said to be superscalar.
- Examples:
 - AMD Opteron
 - 3 Floating point/MMX/SSE units
 - 3 Integer units
 - 3 Load/store units
 - Intel Xeon
 - 2 Floating point units
 - 2 Integer units
 - 2 Load/store units

Floating Point Instruction Set Extensions

- additional floating point instructions beyond the usual floating point add and multiply instructions:
 - Square root instruction --usually not pipelined!
 - AMD Opteron / Intel Xeon
 - SIMD (a.k.a. vector) floating point instructions
 - AMD Opteron/ Intel Xeon
 - IBM Cell –designed around the concept!
- Combined floating point multiply/add (MADD) instruction
 - AMD Opteron ("Barcelona" and after, using SIMD)

Intel Xeon ("Woodcrest" and after, using SIMD)
 November 5, 2008

Instruction Set Extensions

- Intel MMX (Matrix Math eXtensions)/ SSE (Streaming SIMD Extensions) / SSE2 (Streaming SIMD Extensions 2)
- AMD 3DNow! / AMD 3DNow!+ (or 3DNow! Professional, or 3DNow! Athlon) ...
- •
- To check what you have on your machine:
 cat /proc/cpuinfo

CACHE and MEMORY

 CACHE:A store of things that will be required in future, and can be retrieved rapidly. A cache may, or may not, be hidden.

Hierarchy of memory..

- In modern computer system same data is stored in several storage devices during processing
- The storage devices can be described & ranked by their speed and "distance" from the CPU
- There is thus a hierarchy of memory objects
- Programming for a machine with memory hierarchy requires optimization for that memory structure.

Memory hierarchy

Components:

- **Registers:** On-chip circuitry used to hold operands and results of functional unit calculations.
- L1 (Primary) Data Cache: Small (on-chip) cache used to hold data about to operated on by processor.
- L2 (Secondary) Cache: Larger (on-or off-chip) cache used to hold data and instructions retrieved from local memory. Some systems also have L3 and even L4 caches.
- Local Memory: Memory on the same node as the processor.
- Remote Memory: Memory on another node but accessible to all processors in the network.
- Disks: Storage space where to save read large amount of data
- **Tapes/SAN:** space where to store data rarely needed.

Hierarchical Memory and Latency

- The key to hierarchical memory is that going down each level of the hierarchy introduces approximately an order of magnitude more latency than the previous level.
- •
- Actual latencies for an Opteron 8218 (2.6GHz):
 - L1 data cache: 3 CPs
 - L2 cache: 12 CPs
 - Local memory: 166 CPs

let's do some analogy...

SOURCE: JIM GRAY & GORDON BELL

how fast/large are the caches ? (afternoon' exercise)

Single core vs dual core and memory hierarchy:

Figure 1: Single core AMD64 block diagram

Figure 2: Dual core AMD64 block diagram

BANDWIDTH TOWARD LOCAL MEMORY IS SHARED AMONG CORES !

Barcelona quad core architecture

L3 CACHE IS SHARED AMONG CORES !

Few important issues

- Modern architectures have a high degree of parallelism some time hidden to the user
- In order to optimize on them you should be aware of this.
- In particolar:
 - SMP is not always valid: NUMA
 - not only RAM is shared but also L2/L3 Caches

single Core VS Multiple core (from J.Dongarra talk)

