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Agenda:Agenda:

� Introduction

� Performance and evaluating process (Profiling 
and timing your code)  

� Optimization techniques

� General Performance techniques

– Use of  Libraries: see next lecture..
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IntroductionIntroduction

� Discuss how to measure performances of your cluster/system
� Discuss performance tuning techniques common to most 

modern architecture (mainly 32/64 bit commodity processor) 
� Using optimization techniques users have control over

– Code modification

– Compiler options
� Optimization is a dirty work (and dangerous one for your 

code...)   
� Compiler is your best friend..
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Memory hierarchyMemory hierarchy
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Locality of ReferenceLocality of Reference

• Most programs have a high degree of locality in their 
accesses

• Memory hierarchy tries to exploit locality

� Temporal locality:

Recently referenced items (instr or data) are likely to be referenced 
again in the near future:
-iterative loops, subroutines, local variables

-working set concept
� Spatial locality:

programs access data which is near to each other:
-operations on tables/arrays
-cache line size is determined by spatial locality

� Sequential locality:

processor executes instructions in program order:
-branches/in-sequence ratio is typically 1 to 5
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Performance Evaluation processPerformance Evaluation process

� Monitoring System:
– Use monitoring tools to better understand your machine’s limits 

and usage
� is the system limit well suited to run my application ? 

– Observe both overall system performance and single-program
execution characteristics. Monitoring your own code

� Is the system doing well ? Is my program running in a 
pathological situation ?

� Monitoring your own code:
– Timing the code:

� timing a whole program (time command :/usr/bin/time) 
� timing a portion (all portions)  of the program 

– Profiling the program
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What to measure ? What to measure ? 

� Scire est Mensurare - J.Keppler 

� Examples:

– Elapsed execution time of (part of) a program

� Which algorithm runs faster in practice?

– Number of instructions executed, absolute total or rate per second

� Compare to theoretical peak performance e.g. instructions per cycle 
(IPC)

– Rate of floating point operations per second (Mflops)

� Compare to theoretical or sustained Mflops peak performance

– System events, e.g. cache hits, system calls

� Determine how much and when/where overhead occurs

– Communication latency

–  Reorganize communications and computation (improve latency hiding)

– Parallel speedup

�  How effective is parallelism?
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Useful Monitoring Commands (Linux)Useful Monitoring Commands (Linux)

� Uptime(1)  returns information about system usage and user load
� ps(1)                 lets you see a “snapshot” of the process table
� top  process table dynamic display
� free  memory usage
� vmstat  memory usage monitor 
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Monitoring your own code (time)Monitoring your own code (time)

 

NAME
       time - time a simple command or give resource usage

SYNOPSIS
       time [options] command [arguments...]

DESCRIPTION
       The  time  command runs the specified program command with

the given arguments. When command finishes, time writes a
       message  to standard output giving timing statistics about
       this program .. 

--------------->time ./a.out
 [program output]

real    0m1.361s
user    0m0.770s
sys     0m0.590s user time: Cpu-time dedicated to your program

sys time: time used by your program to execute 
system  calls 
real time: total time aka walltime 
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User/System/Walltime User/System/Walltime 

� Real time (or wall clock time) is the total elapsed time from start 
to end of a timed task

� CPU user time is the time spent executing in user space

– Does not include time spent in system (OS calls) and time spent  
executing other processes

� CPU system time is the time spent executing system calls 
(kernel code)

– System calls for I/O, devices, synchronization and locking, threading, 
memory allocation

– Typically does not include process waiting time for non-ready  
devices such as disks

� CPU user time + CPU system time < real time

– CPU percentage spent on process = 100% * (user+system) / real
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a top disaster:  swapping..a top disaster:  swapping.. 

�virtual or swap memory:
This memory, is actually space on the hard drive. The operating  system 

reserves a space on the hard drive for “swap space”.

 
� time to access virtual memory VERY large: 
� this time is done by the system not by your program ! 
�sometimes the system assumes a killer to kill your program.. (oom killer) 
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top disaster example (1)top disaster example (1)

 

[cozzini@stroligo optimization]$ /usr/bin/time ./a.out
 provide an integer (suggested range 100-250)
larger values can be very memory and time-consuming
300
 inizialisation time= 11.787208
10.86user 0.98system 0:14.22elapsed 83%CPU (0avgtext+0avgdata 0maxresident)k
0inputs+0outputs (5major+106090minor)pagefaults 0swaps

[cozzini@stroligo optimization]$ /usr/bin/time ./a.out
 provide an integer (suggested range 100-250)
larger values can be very memory and time-consuming
320
Command terminated by signal 2
0.18user 1.81system 0:29.27elapsed 6%CPU (0avgtext+0avgdata 0maxresident)k
0inputs+0outputs (5846major+170788minor)pagefaults 0swaps
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top disaster example (2)top disaster example (2)

[cozzini@stroligo optimization]$ /usr/bin/time ./a.out <300 &
[cozzini@stroligo optimization]$ free
           total      used      free    shared   buffers    cached
Mem:       507492     484916     22576        0      1156     10172
-/+ buffers/cache:     473588     33904
Swap:     2048248     78108    1970140

[cozzini@stroligo optimization]$ /usr/bin/time ./a.out <320 &
[cozzini@stroligo optimization]$ free
           total      used      free    shared   buffers    cached
Mem:       507492     506412      1080        0      252     3936
-/+ buffers/cache:     502224      5268
Swap:     2048248     546348    1501900
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Timing portion of the codeTiming portion of the code
� Record the time 

before portion A

� execute portion A

� record the time
after portion A

� print/save the 
difference in time 
for subsequent
analysis 

� C function to 
compute time:

– clock 

� Fortran90 function 
to compute time:

– cpu_time routine 
(f95)

clock_t c0, c1;
c0 = clock();
 section to code.. 
c1= clock();
cputime = (c1 - c0)/(CLOCKS_PER_SEC );

call cpu_time(t0)
 
 section to code.. 
 call cpu_time(t1)
 cputime = (t1 - t0)
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Well written codes have their own timingWell written codes have their own timing 
report.. report..

c

 !!Specific TIMING for section:  MD INTEGRATION !!!!!!!!!!                 
               !Serial subroutines :

 !section              times  avg-time         max(PE)    min(PE)
 !vscale                   2    0.0600    0.0600(  0)    0.0600(  0)
 !scanpairs_prot         100   72.5500   72.5500(  0)   72.5500(  0)
 !vertest_prot           100    2.2600    2.2600(  0)    2.2600(  0)
 !link_list                7   70.2900   70.2900(  0)   70.2900(  0)
!spme_prot 100 727.8700 727.8700( 0) 727.8700( 0)
!fill_charge_gri 100 214.5000 214.5000( 0) 214.5000( 0)
!fft_back 100 79.2700 79.2700( 0) 79.2700( 0)
 !scalar_sum             100   43.2400   43.2400(  0)   43.2400(  0)
 !fft_forw               100   78.8400   78.8400(  0)   78.8400(  0)
 !grad_sum               100  303.6600  303.6600(  0)  303.6600(  0)
 !ewcorr_prot            100   24.4000   24.4000(  0)   24.4000(  0)
 !ewald3_prot        5870100   15.4300   15.4300(  0)   15.4300(  0)
 !pair_force_prot        100    0.0000    0.0000(  0)    0.0000(  0)
 !srfew2_prot        5855979  817.5300  817.5300(  0)  817.5300(  0)
 !dihfrc_prot            100    3.0800    3.0800(  0)    3.0800(  0)
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Processes/programsProcesses/programs
� A CPU bound process is compute intensive

– Very few I/O operations

– Execution speed of algorithm is determined by CPU

– Use performance profiling

� A Memory bound process is memory intensive

– Limited I/O operations and large memory footprint 

– Execution speed is determined by Memory performances 

– Use performance profiling with RAM checkers

� An I/O bound process is I/O intensive

– Process includes I/O operations such as file access, message passing 
over network

– Execution speed is limited by system’s I/O latencies

– Performance analysis method depends on I/O operations:operations on 
file on disk, messages over pipes and sockets,
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Analysis TechniquesAnalysis Techniques

� there are three generally available 
techniques for analyzing code performance:
– Compiler reports and listings
– Profiling
– Hardware performance counters
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Compiler Reports and ListingsCompiler Reports and Listings

� Compilers on most modern high performance
computers are capable of doing a wide range of 
optimizations, 

� By default, compilers generally do not describe in 
much detail what kinds of optimizations they were 
able to perform on a given piece of code.

� However, many compilers will optionally generate 
optimization reports and/or listing files.  
– Optimization reports are typically sent to stderr at 

compile time and contain messages describing what 
optimizations could or could not be applied at various 
points in the source code.  

– Listing files usually consist of a listing of the source code 
with messages about optimizations interspersed through 
the listing.
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Reporting and Listing Compiler OptionsReporting and Listing Compiler Options

GNU compilers  
  None 

PGI compilers

 -Minfo=option[,option,...] 

 
Prints information to stderr on 

option; option can be one or more 

of time, loop, inline, sym, or all 

-Mneginfo=option[,option]
 

Prints information to stderr on why 

optimizations of type option were

not performed; option can be concur 

or loop
 -Mlist Generates a listing file 

Intel compilers 
 -opt_report Generates an optimization report on 

stderr

 -opt_report_file filename Generates an optimization report to 
filename 

 

 



20

05/11/08

ProfilingProfiling

� Profiling is an approach to performance analysis in which the 
amount of time spent in sections of code is measured (using 
either a sampling technique or on entry/exit of a code block) 
and presented as a histogram.

�  This allows a developer to identify the routines which are taking
the most execution time, as these are typically the best 
candidates for optimization.

� Profiling can done at varying levels of granularity:
– Subroutine

– Basic block

– Source code line

� Profiling usually requires special compilation.  
– The specially compiled executable will generate a file 

containing execution profile data as it runs. 

– This data file can be analyzed after the code is run 

– a profiling analysis program should be employed



21

05/11/08

Profiling Compiler OptionsProfiling Compiler Options

FORTRAN INTEL: 
-prof-dir <d>   specify directory for profiling output files (*.dyn and *.dpi)
-prof-file <f>  specify file name for profiling summary file
-prof-gen       instrument program for profiling
-prof-use       enable use of profiling information during optimization
-qp             compile and link for function profiling with UNIX gprof tool
-p              same as -qp

FORTRAN PGF90 
-Mprof[=dwarf|func|hwcts|lines|mpich1|mpich2|time]
                    Generate additional code for profiling
    dwarf           Add limited DWARF info for third party profilers
    func            Function-level profiling
    hwcts           PAPI-based profiling using hardware counters, 64-bit only
    lines           Line-level profiling
    mpich1/2        Use profiled MPI communication library; implies -Mmpich1/2
    time            Sample-based instruction-level profiling

GNU: 
-p  Generate extra code to write profile information suitable for the analysis progr
prof. 
-pg Generate extra code to write profile information suitable for the analysis
program gprof.
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Demo:  Profiling (g95)Demo:  Profiling (g95)

program profiled
  integer,parameter :: N=1000,ntimes=100
  real,dimension(N,N) :: b,c,d
  real,dimension(N) :: a
real :: begin,end

  real,dimension(2) :: rtime

  call random_number(b)
  call random_number(c)
call random_number(d)

  begin=dtime(rtime)
  do it=1,ntimes
    do j=1,N
      a(j)=myvsum(b,j)+myvprod(c,j)*myvsum(d,j)
    end do
    if (mod(it,100).eq.0) write (*,*) a(1),b(1,1),c(1,1),d(1,1)
  end do
  end=dtime(rtime)
  write (*,*) "loop time = ",end," seconds"
  flops=(ntimes*N*(3*N+2))/end*1.0e-6
write (*,*) "loop ran at ",flops," MFLOPS"
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Demo:  Profiling (g95, con’t)Demo:  Profiling (g95, con’t)
 contains
  
real function myvsum(x,j)
  real,dimension(N,N),intent(IN) :: x
  integer,intent(IN) :: j
  myvsum=x(1,j)
  do i=2,N
    myvsum=myvsum+x(i,j)
  end do
end function myvsum

real function myvprod(x,j)
  real,dimension(N,N),intent(IN) :: x
  integer,intent(IN) :: j
  myvprod=x(1,j)
  do i=2,N
    myvprod=myvprod*x(i,j)
  end do
end function myvprod

end program profiled
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Demo:  Profiling (g95 con’t)Demo:  Profiling (g95 con’t)

[cozzini@stroligo optimization]$ g95 -pg profiled.f90
[cozzini@stroligo optimization]$ ./a.out

[cozzini@stroligo optimization]$ gprof a.out gmon.out
Flat profile:

Each sample counts as 0.01 seconds.
  %   cumulative  self            self    total
 time   seconds   seconds   calls   s/call   s/call name
 95.63    53.18   53.18       1    53.18    53.18 MAIN_
  2.40    54.52    1.34                       _g95_random_4
  1.96    55.61    1.09                       xorshf96
  0.01    55.61    0.01                       check_seed

% the percentage of the total running time of the
time      program used by this function.

cumulative a running sum of the number of seconds accounted
 seconds   for by this function and those listed above it.
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Hardware Performance CountersHardware Performance Counters

� Most modern microprocessors have one or more 
event counters which can be used to count low 
level processor events such as floating point 
operations, cache line misses, and total 
instructions executed.

� The output from these counters can be used to 
infer how well a program is utilizing the processor.

� In many cases, there are utilities for accessing 
these hardware counters, through either a library 
or a command line timing interface.

ADVANCED TOPIC FOR II WEEK ACTIVITY
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How to optimize... How to optimize... 

� Iterative optimization

– 1. Check for correct answers (program must be correct!)

– 2. Profile to find the hotspots, e.g. most time-consuming 
routines

– 3. Optimize these routines using compiler options, compiler 
directives (pragmas), and source code modifications

– Repeat 1-3

� Optimizing the hotspots of a program improves overall 
performance

� Programs with “flat profiles” (flat timing histogram)

– Programs with lots of routines that each take a small amount of 
time are difficult to optimize
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Optimization MethodologyOptimization Methodology

� Optimize one loop/routine at a time

� Start with the most time consuming 
routines

� Then the second most....

� Then the third most....

� Parallelise your program..



28

05/11/08

Optimization TechniquesOptimization Techniques

� There are basically three different categories: 

– Improve memory performance (The most important)

� Better memory access pattern

� Optimal usage of cache lines (improve spatial locality)

� Re-usage of cached data (improve temporal locality)

– Improve CPU performance

� Create more opportunities to go superscalar (high
level)

� Better instruction scheduling (low level)

– Use already highly optimized libraries/subroutines 
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Where to optimize ?Where to optimize ? 
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Optimization Techniques  for memoryOptimization Techniques  for memory

� Loop Interchanges
� Effective Reuse of Data Cache
� Loop Unrolling
� Loop Fusion/Fission 
� Prefetching
� Floating Point Division
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Storage in MemoryStorage in Memory
The storage order is language dependent:

Fortran stores “column-wise”

C stores “row-wise”

Accessing elements in storage order greatly enhances the 
performance for problem sizes that do not fit in the cache(s)

(spatial locality:  stride 1 access )



32

05/11/08

Array IndexingArray Indexing

There are several ways to index arrays:

The addressing scheme can (and will) have an impact on the 
performance

Do j=1,M
    Do i=1,N
      ..A(i, j)
    END DO
END DO Direct

Do j=1,M
    Do i=1,N

k=k+1
      ..A(k)
    END DO
END DO Loop carried

Do j=1,M
    Do i=1,N
      ..A(index(i,j))..
    END DO
END DO Indirect

Do j=1,M
Do i=1,N

      ..A(i+(j-1)*N)
    END DO
END DO Explicit
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Data DependenciesData Dependencies

� Independent instructions can be scheduled at the same time on the multiple 
execution units in superscalar CPU.

� Independent operations can be (software) pipelined on the CPU

�

� Standard prog language (F77/F90/C/C++) do not provide explicit information 

on data  dependencies.
� Compilers assume worse case for the data dependencies:

-problem for indirectly addressed arrays in Fortran

-problem for all pointers C

Loop-carried dependencies
index(1,i) index(1,i+k) Loop-carried

do i=1,n    dependencies
a (index (1,i)) = b(i)
a (index (2,i)) = c(i)

end do index(2,i) index(2,i+k) Non-loop-carried
   dependencies
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Loop InterchangeLoop Interchange
Basic idea: In a nested loop, examine and possibly change the 

order of the loop

Advantages:

Better memory access patterns (leading to improved cache and memory 
usage)

Elimination of data dependencies (to increase the opportunities for CPU 
optimization and parallelization)

Disadvantage:

May make a short loop innermost (which is not good for optimal
performances
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Loop Interchange - Example 1Loop Interchange - Example 1

Original Interchanged loops

Access order

Storage order

DO i=1,N
   DO j=1,M
    C(i,j)=A(i,j)+B(i,j)
   END DO
END O

DO j=1,M
   DO i=1,N
     C(i,j)=A(i,j)+B(i,j)
   END DO
END DO
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Loop Interchange in CLoop Interchange in C

In C, the situation is exactly the opposite

interchange          index reversal

� The performance benefit is the same in this case
� In many practical situations, loop interchange is much easier to achieve 

than index reversal

for (j=0; j<M; j++) 
         for (i=0; i<N; i++)

C[j][i] = A[j][i] +B[j][i];

for (i=0; i<N; i++) 
           for (j=0; j<N; j++)

C[i][j] = A[i][j] +B[i][j];

 for (j=0; j<M; j++)
        for (i=0; i<N; i++)

C[i][j] = A[i][j] +B[i][j];
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Loop Interchange – Mnemonic rule Loop Interchange – Mnemonic rule 

� With row-major, the column or "rightmost" 
index varies most quickly (C/C+)

�  With column-major, the row of "leftmost" 
index varies most quickly.(Fortran/F90) 
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Loop Interchange - Example 2Loop Interchange - Example 2

Timings are in seconds

Loop order x335 (P4 2.4Ghz) x330 (P3 1.4Ghz)

i    j    k 8.77 9.06

i    k  j 7.61 6.82

j   i    k 2 2.66

j    k    i 0.57 1.32

k   i   j 0.9 1.95

k   j    i 0.44 1.25

DO i=1,300
   DO j=1,300
      DO k=1,300
         A (i,j,k) = A (i,j,k)+ B (i,j,k)* C (i,j,k)
      END DO
   END DO
END DO
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Loop Interchange Compiler OptionsLoop Interchange Compiler Options

GNU compilers: 

None 

PGI compilers:
-Mvect Enable vectorization, including loop 

interchange 
 

Intel compilers:  

-O3 Enable aggressive optimization, 
including loop transformations 
 

 

 

 

TEST IF WHAT THEY CLAIM TO DO IS WHAT 
THEY ACTUALLY  DO  
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Cache ThrashingCache Thrashing

Typical  problem in code performance is cache thrashing. 

Cache trashing happens when data in cache are rewritten and 
fully reused. 

In the previous case, the cache thrashing was minimized by loop 
interchange.

Another optimization technique aimed at minimizing cache 
thrashing is COMMON block padding. 

consider:    a(i) +b(i)=c(i) 

A

BCcpu +
L1..

A

C

L2 RAM

B CA
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demo on cache trashingdemo on cache trashing

In the next two programs arrays b and c both fill the cache so when 
they are used in the addition loop considerable cache thrashing 
occurs as c(1) knocks out the line b(1) is in, then b(2) knocks out 
the line c(1) was in and so on.

The second program illustrates the use of common-block padding.  
By putting a fake array - space(4) - between b and c in the 
COMMON block we shift the memory addresses of b and c and thus 
shift the cache lines they map to. Arrays b and c no longer collide in 
the cache.
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Demo:  Cache ThrashingDemo:  Cache Thrashing
 program thrash 
  integer,parameter :: N=4*1024*1024
  real,dimension(N) :: c,b,a
  real:: begin,end
  real,dimension(2):: rtime
  common/saver/a,b,c
!DIR$ CACHE_ALIGN /saver/
  call random_number(b)
  call random_number(c)
  begin=dtime(rtime)
  do i=1,N
    a(i)=b(i)+c(i)
  end do
  end=dtime(rtime)
  print *,'my loop time (s) is ',end
  flop=N/end*1.0e-6
  print *,'loop runs at ',flop,' MFLOP'
  print *,a(1),b(1),c(1)
 end program thrash

Considerable cache 

thrashing occurs as c(1) 

knocks out the line b(1) 

is in, then b(2) knocks 

out the line c(1) was in 

and so on
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Solution: COMMON Block Padding Solution: COMMON Block Padding 
 program pad
  integer,parameter :: N=4*1024*1024
  real,dimension(N) :: c,b,a
  real:: begin,end
  real,dimension(2):: rtime
  common/saver/a,b,space(4),c
!DIR$ CACHE_ALIGN /saver/
  call random_number(b)
  call random_number(c)
  begin=dtime(rtime)
  do i=1,N
    a(i)=b(i)+c(i)
  end do
  end=dtime(rtime)
  print *,'my loop time (s) is ',end
  flop=N/end*1.0e-6
  print *,'loop runs at ',flop,' MFLOP'
  print *,a(1),b(1),c(1)
 end program pad

.2000000    
 loop runs at     20.97152      MFLOP
    1.611511       0.9079230       0.7035879

By putting the fake array, 

space(4), in the 

COMMON block, arrays  b 

and c no longer collide in 

the cache.
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COMMON Block Padding CompilerCOMMON Block Padding Compiler 
OptionsOptions
GNU compilers: 

  -malign-double Align double precision variables on 
64-bit boundaries, including in 
COMMON blocks 

PGI compilers: 

 -Mdalign 

 
Align doubles [i.e. REAL*8] in 
COMMON blocks and structureson 8-
byte boundaries 

Intel compilers:  

 -Zp8 Specifyalignment constraint for
structures on 8-byte boundaries, 
including in COMMON blocks; default

 -pad Enablechangingof variableandarray
memory layout 

 -nopad Disable changing of variable and array 
memory layout; default 

  

 

TEST IF WHAT THEY CLAIM TO DO IS WHAT 
THEY ACTUALLY  DO  
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PrefetchingPrefetching

� Prefetching is the retrieval of data from 
memory to cache before it is needed in an 
upcoming calculation. This is an example of 
general optimization technique called 
latency hiding in which communications and 
calculations are overlapped and occur 
simultaneously.

� The actual mechanism for prefetching varies
from one machine to another.
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Prefetching Compiler OptionsPrefetching Compiler Options

GNU:
-fprefetch-loop-arrays
   If supported by the target machine, generate instructions to prefetch 
memory to improve the performance of loops that access large arrays.

PGI:
-Mprefetch[=option:n] -Mnoprefetch
    Add (don’t add) prefetch instructions for those processors that support 
them (Pentium 4,Opteron); -Mprefetch is default on Opteron; -Mnoprefetch is 
default on other processors.

INTEL:
-O3     Enable  -O2 optimizations and in addition, enable more aggressive 
optimizations such as loop and memory access transformation, and 
prefetching. 

TEST IF WHAT THEY CLAIM TO DO IS WHAT 
THEY ACTUALLY  DO  
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Demo:  Prefetching ()Demo:  Prefetching ()

 program sum 
  integer,parameter :: N=5000,ntimes=20000
  real :: x(N),y(N)
  real:: begin,end
  real:: rtime(2)
  common/saver/x,y
!DIR CACHE_ALIGN
  call random_number(x)
  call random_number(y)
begin=dtime(rtime)

  do it=1,ntimes
    do i=1,N
      y(i)=x(i)+i
    end do
    if (mod(it,1000).eq.0) print *,x(1),y(1)
  end do
  end=dtime(rtime)
  print *,' my loop time (s) is ',end
  flop=(N*ntimes)/end*1.0e-6
  print *,' loop runs at ',flop,' MFLOP'
end program sum
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Loop UnrollingLoop Unrolling
Loop unrolling is an optimization technique which can be applied 
to loops which perform calculations on array elements.

Consists of replicating the body of the loop so that calculations
are performed on several array elements during each iteration.

Reason for unrolling is to take advantage of pipelined functional 
units.  Consecutive elements of the arrays can be in the 
functional unit simultaneously.

Programmer usually does not have to unroll loops “by hand” --
compiler options and directives are usually available.  Performing 
unrolling via directives and/or options is preferable

Code is more portable to other systems

Code is self-documenting and easier to read

Loops with small trip counts or data dependencies should not be 
unrolled!
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Loop Unrolling (con’t)Loop Unrolling (con’t)
Advantages:

Can be done automatically by
compiler.

Makes use of pipelined 
functional units.

Makes use of multiple
pipelined functional units on 
superscalar processors.

Compiler may be able to pre-
load array operands into 
registers, hiding load 
latencies.

Disadvantages:

Limited number of FP
registers

Pentium III:  8

Pentium 4:  8

Athlon:  8

Opteron: 4  

Itanium: 128(!)
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Loop Unrolling ExampleLoop Unrolling Example

� Normal loop

do i=1,N

a(i)=b(i)+x*c(i)
enddo

� Manually unrolled loop

do i=1,N,4

a(i)=b(i)+x*c(i)

a(i+1)=b(i+1)+x*c(i+1)

a(i+2)=b(i+2)+x*c(i+2)

a(i+3)=b(i+3)+x*c(i+3)
enddo
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Loop Unrolling Compiler OptionsLoop Unrolling Compiler Options

GNU compilers:
 -funroll-loops Enable loop unrolling

  -funroll-all-loops Unroll all loops; not recommended 

PGI compilers: 
 -Munroll Enable loop unrolling

 -Munroll=c:N Unroll loops with trip counts of at least N 

 -Munroll=n:M Unroll loops up to M times

Intel compilers:  
 -unroll Enable loop unrolling

 -unrollM Unroll loops up to M times 

  

 

  
TEST IF WHAT THEY CLAIM TO DO IS WHAT 
THEY ACTUALLY  DO  
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Loop unrolling directives… Loop unrolling directives… 
 program dirunroll
  integer,parameter :: N=1000000
  real,dimension(N):: a,b,c
  real:: begin,end
  real,dimension(2):: rtime
  common/saver/a,b,c
    call random_number(b)
    call random_number(c)
    x=2.5
    begin=dtime(rtime)
!DIR$ UNROLL 4

do i=1,N
a(i)=b(i)+x*c(i)

    end do
    end=dtime(rtime)
    print *,' my loop time (s) is ',(end)
    flop=(2.0*N)/(end)*1.0e-6
    print *,' loop runs at ',flop,' MFLOP'
    print *,a(1),b(1),c(1)
 end s) is    5.9999999E-02
  loop runs at     33.33334      MFLOP
    2.927826       0.9079230       0.8079612
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Loop Fusion and FissionLoop Fusion and Fission
Fusion: Merge multiple loops into one

Fission: Split one loop into multiple loops

DO
  .....
END DO

  DO
   .....
   .....

 END DO

  

DO

    .....
    .....

  END DO

  

DO
  .....
END DO

DO
.....

END DO

DO
 .....

END DO
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Example of Loop FusionExample of Loop Fusion

Potential for Fusion: dependent operations in separate

      loops
Advantage:

� Re-usage of array B()
Disadvantages:

� In total 4 arrays now contend for cache space
� More registers needed

DO i=1,N
  B(i)=2*A(i)
END DO

DO k=1,N
   C(k)=B(k)+D(k)
END DO

DO ii=1,N
  B(ii)=2*A(ii)
  C(ii)=B(ii)+D(ii)
END DO
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Example of Loop FissionExample of Loop Fission

Potential for Fission: independent operations in a single

        loop
Advantage:

� First loop can be scheduled more efficiently and be parallelised as 
well

Disadvantages:
� Less opportunity for out-of-order superscalar execution
� Additional loop created (a minor disadvantage)

DO ii=1,N
   B(ii)=2*A(ii)
END DODO ii=1,N

   B(i)=2*A(i)
   D(i)=D(i-1)+C(i)
END DO

DO ii=1,N
   D(ii)=D(ii-1)+C(ii)
END DO
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Floating Point DivisionFloating Point Division

� Floating point division is an expensive 
operation
– Takes 22-60 CPs to complete (average about 32

CPs)
– Usually not pipelined
– According to the IEEE floating point standard, 

divisions must be carried out as such and not 
replaced with a multiplication by a reciprocal 
(even for division by a constant!)

� A possible optimization technique is to 
“relax” the IEEE requirements and replace a 
division with multiplication by a reciprocal. 
Most compilers do this automatically at 
higher levels of optimization.
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Floating Point Division Compiler Floating Point Division Compiler 
OptionsOptions

GNU:
-funsafe-math-optimizations
    Allow optimizations for floating-point arithmetic that (a) assume that 
arguments and results are valid and (b) may violate IEEE or ANSI standards.

PGI:
--Kieee -Knoieee (default)
    Perform floating-point operations in strict conformance with the IEEE 
754 standard. Some optimizations are disabled with -Kieee, and a more
accurate math library is used.  The default -Knoieee uses faster but very 
slightly less accurate methods.

INTEL:
--no-prec-div  (i32 and i32em)
    Enables  optimizations  that  give  slightly  less precise results than 
full IEEE division. With some optimizations, such as -xN and -xB, the 
compiler may change floating-point  division  computations  into  
multiplication by the reciprocal of the denominator.
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Floating Point Division ExampleFloating Point Division Example

� SEE YESTERDAY'S LAB.. 
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Floating Point Division With ArraysFloating Point Division With Arrays

� Consider the following loop nest in which the array A(i,j) is 
scaled by different factors stored in array B(i):

do j=1,N
do i=1,N

A(i,j)=A(i,j)/B(i)

enddo

enddo

� The compiler can do no automatic optimization to this, because 
B(i) is not a scalar.  However, you can manually do the following:
– Create a temporary array to hold the inverses of the B(i) array.

– Replace the division in the inner loop with multiplication by the 
temporary array.

– The resulting code can be unrolled and/or pipelined.
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Optimization based on Microprocessor Optimization based on Microprocessor 
ArchitecturesArchitectures

� Pipelined Functional Units
� Superscalar Processors

– Processors which have multiple functional units 
are said to be superscalar.

� Instruction Set Extensions
– Newer processors have additional instructions 

beyond the usual floating point add and multiply 
instructions:

� SSE2/SSE3/3DNow ! Etc...

� Cat /proc/cpuinfo..

–
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Pipelined Functional UnitsPipelined Functional Units
� For the processors in most modern parallel machines, 

the circuitry on the chip which performs a given type 
of operation on operands in registers is known as a 
functional unit.

� Most integer and floating point functional units are 
pipelined, meaning that they can have multiple 
independent executions of the same instruction 
placed in a queue. The idea is that after an initial
startup latency, the functional unit should be able to
generate one result every clock period (CP).

� Each stage of a pipelined operation can be working 
simultaneously on different sets of operands.
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Superscalar ProcessorsSuperscalar Processors
� Processors which have multiple functional 

units are said to be superscalar.
� Examples:

– Intel Pentium 3
� 1 Floating point unit
� 1 MMX/SSE unit
� 2 Integer units
� 2 Load/store units

– Intel Pentium 4
� 2 Floating point
� 1 /MMX/SSE units
� 2 Integer units
� 2 Load/store units
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Pipelining Compiler OptionsPipelining Compiler Options

GNU:
  none 

PGI:
--Mvect[=option[,option,...]] -Mnovect (default)
            Pass options to the internal vectorizer.

INTEL:
    none 
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Instruction Set ExtensionsInstruction Set Extensions
Newer processors have additional instructions 

beyond the usual floating point add and 
multiply instructions:

� Intel MMX (Matrix Math eXtensions):   
– introduced in 1997 supported by all current 

processors  

� Intel SSE (Streaming SIMD Extensions):  

–  introduced on the Pentium III in 1999 

–  useless for scientific computation: single 
precision 

� Intel SSE2 (Streaming SIMD Extensions 2):  

–  introduced on the Pentium 4 in Dec 2000
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Instruction Set Extensions (2)Instruction Set Extensions (2)

� AMD 3DNow! : 
–  introduced in 1998 (extends MMX) " 

� AMD 3DNow!+ (or 3DNow! Professional, or 
3DNow! Athlon):

– introduced with the Athlon (includes SSE)

� To check what you have on your machine:
– cat /proc/cpuinfo
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Instruction Set Extension Compiler Instruction Set Extension Compiler 
OptionsOptions

GNU:
 -mmmx/no-mmx         These switches enable or disable the use of       
                built-in functions that allow direct access to   -msse  
            the MMX, SSE, SSE2, SSE3 and 3Dnow
 -mno-sse             extensions of the instruction set
 -msse2 /  -mno-sse2
 -msse3 /  -mno-sse3
-m3dnow / -mno-3dnow
        
PGI:
 --fastsse
    Chooses generally optimal flags for a processor that supports
    SSE instructions (Pentium 3/4, AthlonXP/MP, Opteron) and SSE2
    (Pentium 4, Opteron).  Use pgf90 -fastsse -help to see the
    equivalent switches.

INTEL:
 -arch SSE   Optimizes  for Intel Pentium 4 processors with Streaming      
       SIMD Extensions (SSE).
 -arch SSE2  Optimizes for Intel Pentium 4 processors with Streaming      
        SIMD Extensions 2 (SSE2).
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General techniquesGeneral techniques

� Blocking/ tiling 
� !! Use of optimized libraries !! 
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Blocking for cache (tiling)Blocking for cache (tiling)
Blocking for cache is:

-An optimization that applies for datasets that do not entirely fit in the 
(2nd level) data cache

-A way to increase spatial locality of reference i.e. exploit full cache lines

-A way to increase temporal locality of reference i.e. Improves data re-
usage

By way of example, let discuss the transpose of a matrix...

do i=1,n
  do j=1,n
    a(i,j)=b(j,i)
  end do
end do



69

Block algorithm for transposing  a matrix:Block algorithm for transposing  a matrix:

� block data size= bsize

– mb=n/bsize

– nb=n/bsize

� Code is a little bit 
more complicated if

– MOD(n,bize) is not zero

– MOD(m,bize) is not 
zero

do ib = 1, nb 
 ioff = (ib-1) * bsiz 
 do jb = 1, mb 
   joff = (jb-1) * bsiz 
    do j = 1, bsiz 
      do i = 1, bsiz 
        buf(i,j) = x(i+ioff, j+joff) 
     enddo 
    enddo 
    do j = 1, bsiz 
      do i = 1, j-1 
       bswp = buf(i,j) 

buf(i,j) = buf(j,i)
       buf(j,i) = bswp
      enddo 
     enddo 
    do i=1,bsiz 
      do j=1,bsiz 
       y(j+joff, i+ioff) = buf(j,i) 
      enddo 
    enddo 
  enddo 
enddo 
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Results... ( Carlo Cavazzoni data)Results... ( Carlo Cavazzoni data)
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Optimizing Matrix Multiply for CachesOptimizing Matrix Multiply for Caches

� Several techniques for making this faster on 
modern processors
– heavily studied

� Some optimizations done automatically by 
compiler, but can do much better

� In general, you should use optimized 
libraries (often supplied by vendor) for this 
and other very common linear algebra 
operations
– BLAS = Basic Linear Algebra Subroutines

� Other algorithms you may want are not 
going to be supplied by vendor, so need to 
know these techniques
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SummarySummary

� Performance programming on uniprocessors requires
– understanding of memory system

� levels, costs, sizes

– understanding of fine-grained parallelism in processor to produce 
good instruction mix

– understanding your program

� Compilers are good at instruction level optimization and loop
transformation

� User is responsible to present code in most natural way for
compiler optimizations..

� The techniques work for any architecture, but choosing details 
depends on the architecture

� Blocking (tiling) is a basic approach that can be applied to
many matrix algorithms


