
1967-9

Advanced School in High Performance and GRID Computing

COZZINI Stefano

3 - 14 November 2008

CNR-INFM Democritos
c/o SISSA

via Beirut 2-4
34014 Trieste

ITALY

Using Compilers and Profilers to Optimize your Code for Performance.

Advanced School in

High Performance

and GRID Computing

ICTP HPC School 2008 – Trieste, Italy - November 03-14, 2008

Advanced School in

High Performance

and GRID Computing

ICTP HPC Schoooll 22000088 – TTrrTTTT iieessttee, IIttaallyy - NNoovveemmbbeerr 0033-1144, 22000088

OPTIMIZATION TECHNIQUE OPTIMIZATION TECHNIQUE

Stefano Cozzini

CNR-INFM DEMOCRITOS, Trieste

2

05/11/08

Agenda:Agenda:

� Introduction

� Performance and evaluating process (Profiling
and timing your code)

� Optimization techniques

� General Performance techniques

– Use of Libraries: see next lecture..

3

05/11/08

IntroductionIntroduction

� Discuss how to measure performances of your cluster/system
� Discuss performance tuning techniques common to most

modern architecture (mainly 32/64 bit commodity processor)
� Using optimization techniques users have control over

– Code modification

– Compiler options
� Optimization is a dirty work (and dangerous one for your

code...)
� Compiler is your best friend..

4

Memory hierarchyMemory hierarchy

5

Locality of ReferenceLocality of Reference

• Most programs have a high degree of locality in their
accesses

• Memory hierarchy tries to exploit locality

� Temporal locality:

Recently referenced items (instr or data) are likely to be referenced
again in the near future:
-iterative loops, subroutines, local variables

-working set concept
� Spatial locality:

programs access data which is near to each other:
-operations on tables/arrays
-cache line size is determined by spatial locality

� Sequential locality:

processor executes instructions in program order:
-branches/in-sequence ratio is typically 1 to 5

6

05/11/08

Performance Evaluation processPerformance Evaluation process

� Monitoring System:
– Use monitoring tools to better understand your machine’s limits

and usage
� is the system limit well suited to run my application ?

– Observe both overall system performance and single-program
execution characteristics. Monitoring your own code

� Is the system doing well ? Is my program running in a
pathological situation ?

� Monitoring your own code:
– Timing the code:

� timing a whole program (time command :/usr/bin/time)
� timing a portion (all portions) of the program

– Profiling the program

7

What to measure ? What to measure ?

� Scire est Mensurare - J.Keppler

� Examples:

– Elapsed execution time of (part of) a program

� Which algorithm runs faster in practice?

– Number of instructions executed, absolute total or rate per second

� Compare to theoretical peak performance e.g. instructions per cycle
(IPC)

– Rate of floating point operations per second (Mflops)

� Compare to theoretical or sustained Mflops peak performance

– System events, e.g. cache hits, system calls

� Determine how much and when/where overhead occurs

– Communication latency

– Reorganize communications and computation (improve latency hiding)

– Parallel speedup

� How effective is parallelism?

8

05/11/08

Useful Monitoring Commands (Linux)Useful Monitoring Commands (Linux)

� Uptime(1) returns information about system usage and user load
� ps(1) lets you see a “snapshot” of the process table
� top process table dynamic display
� free memory usage
� vmstat memory usage monitor

9

05/11/08

Monitoring your own code (time)Monitoring your own code (time)

NAME
 time - time a simple command or give resource usage

SYNOPSIS
 time [options] command [arguments...]

DESCRIPTION
 The time command runs the specified program command with

the given arguments. When command finishes, time writes a
 message to standard output giving timing statistics about
 this program ..

--------------->time ./a.out
 [program output]

real 0m1.361s
user 0m0.770s
sys 0m0.590s user time: Cpu-time dedicated to your program

sys time: time used by your program to execute
system calls
real time: total time aka walltime

10

User/System/Walltime User/System/Walltime

� Real time (or wall clock time) is the total elapsed time from start
to end of a timed task

� CPU user time is the time spent executing in user space

– Does not include time spent in system (OS calls) and time spent
executing other processes

� CPU system time is the time spent executing system calls
(kernel code)

– System calls for I/O, devices, synchronization and locking, threading,
memory allocation

– Typically does not include process waiting time for non-ready
devices such as disks

� CPU user time + CPU system time < real time

– CPU percentage spent on process = 100% * (user+system) / real

11

a top disaster: swapping..a top disaster: swapping..

�virtual or swap memory:
This memory, is actually space on the hard drive. The operating system

reserves a space on the hard drive for “swap space”.

� time to access virtual memory VERY large:
� this time is done by the system not by your program !
�sometimes the system assumes a killer to kill your program.. (oom killer)

12

top disaster example (1)top disaster example (1)

[cozzini@stroligo optimization]$ /usr/bin/time ./a.out
 provide an integer (suggested range 100-250)
larger values can be very memory and time-consuming
300
 inizialisation time= 11.787208
10.86user 0.98system 0:14.22elapsed 83%CPU (0avgtext+0avgdata 0maxresident)k
0inputs+0outputs (5major+106090minor)pagefaults 0swaps

[cozzini@stroligo optimization]$ /usr/bin/time ./a.out
 provide an integer (suggested range 100-250)
larger values can be very memory and time-consuming
320
Command terminated by signal 2
0.18user 1.81system 0:29.27elapsed 6%CPU (0avgtext+0avgdata 0maxresident)k
0inputs+0outputs (5846major+170788minor)pagefaults 0swaps

13

top disaster example (2)top disaster example (2)

[cozzini@stroligo optimization]$ /usr/bin/time ./a.out <300 &
[cozzini@stroligo optimization]$ free
 total used free shared buffers cached
Mem: 507492 484916 22576 0 1156 10172
-/+ buffers/cache: 473588 33904
Swap: 2048248 78108 1970140

[cozzini@stroligo optimization]$ /usr/bin/time ./a.out <320 &
[cozzini@stroligo optimization]$ free
 total used free shared buffers cached
Mem: 507492 506412 1080 0 252 3936
-/+ buffers/cache: 502224 5268
Swap: 2048248 546348 1501900

14

Timing portion of the codeTiming portion of the code
� Record the time

before portion A

� execute portion A

� record the time
after portion A

� print/save the
difference in time
for subsequent
analysis

� C function to
compute time:

– clock

� Fortran90 function
to compute time:

– cpu_time routine
(f95)

clock_t c0, c1;
c0 = clock();
 section to code..
c1= clock();
cputime = (c1 - c0)/(CLOCKS_PER_SEC);

call cpu_time(t0)

 section to code..
 call cpu_time(t1)
 cputime = (t1 - t0)

15

Well written codes have their own timingWell written codes have their own timing
report.. report..

c

 !!Specific TIMING for section: MD INTEGRATION !!!!!!!!!!
 !Serial subroutines :

 !section times avg-time max(PE) min(PE)
 !vscale 2 0.0600 0.0600(0) 0.0600(0)
 !scanpairs_prot 100 72.5500 72.5500(0) 72.5500(0)
 !vertest_prot 100 2.2600 2.2600(0) 2.2600(0)
 !link_list 7 70.2900 70.2900(0) 70.2900(0)
!spme_prot 100 727.8700 727.8700(0) 727.8700(0)
!fill_charge_gri 100 214.5000 214.5000(0) 214.5000(0)
!fft_back 100 79.2700 79.2700(0) 79.2700(0)
 !scalar_sum 100 43.2400 43.2400(0) 43.2400(0)
 !fft_forw 100 78.8400 78.8400(0) 78.8400(0)
 !grad_sum 100 303.6600 303.6600(0) 303.6600(0)
 !ewcorr_prot 100 24.4000 24.4000(0) 24.4000(0)
 !ewald3_prot 5870100 15.4300 15.4300(0) 15.4300(0)
 !pair_force_prot 100 0.0000 0.0000(0) 0.0000(0)
 !srfew2_prot 5855979 817.5300 817.5300(0) 817.5300(0)
 !dihfrc_prot 100 3.0800 3.0800(0) 3.0800(0)

16

Processes/programsProcesses/programs
� A CPU bound process is compute intensive

– Very few I/O operations

– Execution speed of algorithm is determined by CPU

– Use performance profiling

� A Memory bound process is memory intensive

– Limited I/O operations and large memory footprint

– Execution speed is determined by Memory performances

– Use performance profiling with RAM checkers

� An I/O bound process is I/O intensive

– Process includes I/O operations such as file access, message passing
over network

– Execution speed is limited by system’s I/O latencies

– Performance analysis method depends on I/O operations:operations on
file on disk, messages over pipes and sockets,

17

05/11/08

Analysis TechniquesAnalysis Techniques

� there are three generally available
techniques for analyzing code performance:
– Compiler reports and listings
– Profiling
– Hardware performance counters

18

Compiler Reports and ListingsCompiler Reports and Listings

� Compilers on most modern high performance
computers are capable of doing a wide range of
optimizations,

� By default, compilers generally do not describe in
much detail what kinds of optimizations they were
able to perform on a given piece of code.

� However, many compilers will optionally generate
optimization reports and/or listing files.
– Optimization reports are typically sent to stderr at

compile time and contain messages describing what
optimizations could or could not be applied at various
points in the source code.

– Listing files usually consist of a listing of the source code
with messages about optimizations interspersed through
the listing.

19

05/11/08

Reporting and Listing Compiler OptionsReporting and Listing Compiler Options

GNU compilers
 None

PGI compilers

 -Minfo=option[,option,...]

Prints information to stderr on

option; option can be one or more

of time, loop, inline, sym, or all

-Mneginfo=option[,option]

Prints information to stderr on why

optimizations of type option were

not performed; option can be concur

or loop
 -Mlist Generates a listing file

Intel compilers
 -opt_report Generates an optimization report on

stderr

 -opt_report_file filename Generates an optimization report to
filename

20

05/11/08

ProfilingProfiling

� Profiling is an approach to performance analysis in which the
amount of time spent in sections of code is measured (using
either a sampling technique or on entry/exit of a code block)
and presented as a histogram.

� This allows a developer to identify the routines which are taking
the most execution time, as these are typically the best
candidates for optimization.

� Profiling can done at varying levels of granularity:
– Subroutine

– Basic block

– Source code line

� Profiling usually requires special compilation.
– The specially compiled executable will generate a file

containing execution profile data as it runs.

– This data file can be analyzed after the code is run

– a profiling analysis program should be employed

21

05/11/08

Profiling Compiler OptionsProfiling Compiler Options

FORTRAN INTEL:
-prof-dir <d> specify directory for profiling output files (*.dyn and *.dpi)
-prof-file <f> specify file name for profiling summary file
-prof-gen instrument program for profiling
-prof-use enable use of profiling information during optimization
-qp compile and link for function profiling with UNIX gprof tool
-p same as -qp

FORTRAN PGF90
-Mprof[=dwarf|func|hwcts|lines|mpich1|mpich2|time]
 Generate additional code for profiling
 dwarf Add limited DWARF info for third party profilers
 func Function-level profiling
 hwcts PAPI-based profiling using hardware counters, 64-bit only
 lines Line-level profiling
 mpich1/2 Use profiled MPI communication library; implies -Mmpich1/2
 time Sample-based instruction-level profiling

GNU:
-p Generate extra code to write profile information suitable for the analysis progr
prof.
-pg Generate extra code to write profile information suitable for the analysis
program gprof.

22

05/11/08

Demo: Profiling (g95)Demo: Profiling (g95)

program profiled
 integer,parameter :: N=1000,ntimes=100
 real,dimension(N,N) :: b,c,d
 real,dimension(N) :: a
real :: begin,end

 real,dimension(2) :: rtime

 call random_number(b)
 call random_number(c)
call random_number(d)

 begin=dtime(rtime)
 do it=1,ntimes
 do j=1,N
 a(j)=myvsum(b,j)+myvprod(c,j)*myvsum(d,j)
 end do
 if (mod(it,100).eq.0) write (*,*) a(1),b(1,1),c(1,1),d(1,1)
 end do
 end=dtime(rtime)
 write (*,*) "loop time = ",end," seconds"
 flops=(ntimes*N*(3*N+2))/end*1.0e-6
write (*,*) "loop ran at ",flops," MFLOPS"

23

05/11/08

Demo: Profiling (g95, con’t)Demo: Profiling (g95, con’t)
 contains

real function myvsum(x,j)
 real,dimension(N,N),intent(IN) :: x
 integer,intent(IN) :: j
 myvsum=x(1,j)
 do i=2,N
 myvsum=myvsum+x(i,j)
 end do
end function myvsum

real function myvprod(x,j)
 real,dimension(N,N),intent(IN) :: x
 integer,intent(IN) :: j
 myvprod=x(1,j)
 do i=2,N
 myvprod=myvprod*x(i,j)
 end do
end function myvprod

end program profiled

24

05/11/08

Demo: Profiling (g95 con’t)Demo: Profiling (g95 con’t)

[cozzini@stroligo optimization]$ g95 -pg profiled.f90
[cozzini@stroligo optimization]$./a.out

[cozzini@stroligo optimization]$ gprof a.out gmon.out
Flat profile:

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls s/call s/call name
 95.63 53.18 53.18 1 53.18 53.18 MAIN_
 2.40 54.52 1.34 _g95_random_4
 1.96 55.61 1.09 xorshf96
 0.01 55.61 0.01 check_seed

% the percentage of the total running time of the
time program used by this function.

cumulative a running sum of the number of seconds accounted
 seconds for by this function and those listed above it.

25

05/11/08

Hardware Performance CountersHardware Performance Counters

� Most modern microprocessors have one or more
event counters which can be used to count low
level processor events such as floating point
operations, cache line misses, and total
instructions executed.

� The output from these counters can be used to
infer how well a program is utilizing the processor.

� In many cases, there are utilities for accessing
these hardware counters, through either a library
or a command line timing interface.

ADVANCED TOPIC FOR II WEEK ACTIVITY

26

How to optimize... How to optimize...

� Iterative optimization

– 1. Check for correct answers (program must be correct!)

– 2. Profile to find the hotspots, e.g. most time-consuming
routines

– 3. Optimize these routines using compiler options, compiler
directives (pragmas), and source code modifications

– Repeat 1-3

� Optimizing the hotspots of a program improves overall
performance

� Programs with “flat profiles” (flat timing histogram)

– Programs with lots of routines that each take a small amount of
time are difficult to optimize

27

05/11/08

Optimization MethodologyOptimization Methodology

� Optimize one loop/routine at a time

� Start with the most time consuming
routines

� Then the second most....

� Then the third most....

� Parallelise your program..

28

05/11/08

Optimization TechniquesOptimization Techniques

� There are basically three different categories:

– Improve memory performance (The most important)

� Better memory access pattern

� Optimal usage of cache lines (improve spatial locality)

� Re-usage of cached data (improve temporal locality)

– Improve CPU performance

� Create more opportunities to go superscalar (high
level)

� Better instruction scheduling (low level)

– Use already highly optimized libraries/subroutines

29

Where to optimize ?Where to optimize ?

30

05/11/08

Optimization Techniques for memoryOptimization Techniques for memory

� Loop Interchanges
� Effective Reuse of Data Cache
� Loop Unrolling
� Loop Fusion/Fission
� Prefetching
� Floating Point Division

31

05/11/08

Storage in MemoryStorage in Memory
The storage order is language dependent:

Fortran stores “column-wise”

C stores “row-wise”

Accessing elements in storage order greatly enhances the
performance for problem sizes that do not fit in the cache(s)

(spatial locality: stride 1 access)

32

05/11/08

Array IndexingArray Indexing

There are several ways to index arrays:

The addressing scheme can (and will) have an impact on the
performance

Do j=1,M
 Do i=1,N
 ..A(i, j)
 END DO
END DO Direct

Do j=1,M
 Do i=1,N

k=k+1
 ..A(k)
 END DO
END DO Loop carried

Do j=1,M
 Do i=1,N
 ..A(index(i,j))..
 END DO
END DO Indirect

Do j=1,M
Do i=1,N

 ..A(i+(j-1)*N)
 END DO
END DO Explicit

33

05/11/08

Data DependenciesData Dependencies

� Independent instructions can be scheduled at the same time on the multiple
execution units in superscalar CPU.

� Independent operations can be (software) pipelined on the CPU

�

� Standard prog language (F77/F90/C/C++) do not provide explicit information

on data dependencies.
� Compilers assume worse case for the data dependencies:

-problem for indirectly addressed arrays in Fortran

-problem for all pointers C

Loop-carried dependencies
index(1,i) index(1,i+k) Loop-carried

do i=1,n dependencies
a (index (1,i)) = b(i)
a (index (2,i)) = c(i)

end do index(2,i) index(2,i+k) Non-loop-carried
 dependencies

34

05/11/08

Loop InterchangeLoop Interchange
Basic idea: In a nested loop, examine and possibly change the

order of the loop

Advantages:

Better memory access patterns (leading to improved cache and memory
usage)

Elimination of data dependencies (to increase the opportunities for CPU
optimization and parallelization)

Disadvantage:

May make a short loop innermost (which is not good for optimal
performances

35

05/11/08

Loop Interchange - Example 1Loop Interchange - Example 1

Original Interchanged loops

Access order

Storage order

DO i=1,N
 DO j=1,M
 C(i,j)=A(i,j)+B(i,j)
 END DO
END O

DO j=1,M
 DO i=1,N
 C(i,j)=A(i,j)+B(i,j)
 END DO
END DO

36

05/11/08

Loop Interchange in CLoop Interchange in C

In C, the situation is exactly the opposite

interchange index reversal

� The performance benefit is the same in this case
� In many practical situations, loop interchange is much easier to achieve

than index reversal

for (j=0; j<M; j++)
 for (i=0; i<N; i++)

C[j][i] = A[j][i] +B[j][i];

for (i=0; i<N; i++)
 for (j=0; j<N; j++)

C[i][j] = A[i][j] +B[i][j];

 for (j=0; j<M; j++)
 for (i=0; i<N; i++)

C[i][j] = A[i][j] +B[i][j];

37

05/11/08

Loop Interchange – Mnemonic rule Loop Interchange – Mnemonic rule

� With row-major, the column or "rightmost"
index varies most quickly (C/C+)

� With column-major, the row of "leftmost"
index varies most quickly.(Fortran/F90)

38

05/11/08

Loop Interchange - Example 2Loop Interchange - Example 2

Timings are in seconds

Loop order x335 (P4 2.4Ghz) x330 (P3 1.4Ghz)

i j k 8.77 9.06

i k j 7.61 6.82

j i k 2 2.66

j k i 0.57 1.32

k i j 0.9 1.95

k j i 0.44 1.25

DO i=1,300
 DO j=1,300
 DO k=1,300
 A (i,j,k) = A (i,j,k)+ B (i,j,k)* C (i,j,k)
 END DO
 END DO
END DO

39

05/11/08

Loop Interchange Compiler OptionsLoop Interchange Compiler Options

GNU compilers:

None

PGI compilers:
-Mvect Enable vectorization, including loop

interchange

Intel compilers:

-O3 Enable aggressive optimization,
including loop transformations

TEST IF WHAT THEY CLAIM TO DO IS WHAT
THEY ACTUALLY DO

40

05/11/08

Cache ThrashingCache Thrashing

Typical problem in code performance is cache thrashing.

Cache trashing happens when data in cache are rewritten and
fully reused.

In the previous case, the cache thrashing was minimized by loop
interchange.

Another optimization technique aimed at minimizing cache
thrashing is COMMON block padding.

consider: a(i) +b(i)=c(i)

A

BCcpu +
L1..

A

C

L2 RAM

B CA

41

demo on cache trashingdemo on cache trashing

In the next two programs arrays b and c both fill the cache so when
they are used in the addition loop considerable cache thrashing
occurs as c(1) knocks out the line b(1) is in, then b(2) knocks out
the line c(1) was in and so on.

The second program illustrates the use of common-block padding.
By putting a fake array - space(4) - between b and c in the
COMMON block we shift the memory addresses of b and c and thus
shift the cache lines they map to. Arrays b and c no longer collide in
the cache.

42

05/11/08

Demo: Cache ThrashingDemo: Cache Thrashing
 program thrash
 integer,parameter :: N=4*1024*1024
 real,dimension(N) :: c,b,a
 real:: begin,end
 real,dimension(2):: rtime
 common/saver/a,b,c
!DIR$ CACHE_ALIGN /saver/
 call random_number(b)
 call random_number(c)
 begin=dtime(rtime)
 do i=1,N
 a(i)=b(i)+c(i)
 end do
 end=dtime(rtime)
 print *,'my loop time (s) is ',end
 flop=N/end*1.0e-6
 print *,'loop runs at ',flop,' MFLOP'
 print *,a(1),b(1),c(1)
 end program thrash

Considerable cache

thrashing occurs as c(1)

knocks out the line b(1)

is in, then b(2) knocks

out the line c(1) was in

and so on

43

05/11/08

Solution: COMMON Block Padding Solution: COMMON Block Padding
 program pad
 integer,parameter :: N=4*1024*1024
 real,dimension(N) :: c,b,a
 real:: begin,end
 real,dimension(2):: rtime
 common/saver/a,b,space(4),c
!DIR$ CACHE_ALIGN /saver/
 call random_number(b)
 call random_number(c)
 begin=dtime(rtime)
 do i=1,N
 a(i)=b(i)+c(i)
 end do
 end=dtime(rtime)
 print *,'my loop time (s) is ',end
 flop=N/end*1.0e-6
 print *,'loop runs at ',flop,' MFLOP'
 print *,a(1),b(1),c(1)
 end program pad

.2000000
 loop runs at 20.97152 MFLOP
 1.611511 0.9079230 0.7035879

By putting the fake array,

space(4), in the

COMMON block, arrays b

and c no longer collide in

the cache.

44

05/11/08

COMMON Block Padding CompilerCOMMON Block Padding Compiler
OptionsOptions
GNU compilers:

 -malign-double Align double precision variables on
64-bit boundaries, including in
COMMON blocks

PGI compilers:

 -Mdalign

Align doubles [i.e. REAL*8] in
COMMON blocks and structureson 8-
byte boundaries

Intel compilers:

 -Zp8 Specifyalignment constraint for
structures on 8-byte boundaries,
including in COMMON blocks; default

 -pad Enablechangingof variableandarray
memory layout

 -nopad Disable changing of variable and array
memory layout; default

TEST IF WHAT THEY CLAIM TO DO IS WHAT
THEY ACTUALLY DO

45

05/11/08

PrefetchingPrefetching

� Prefetching is the retrieval of data from
memory to cache before it is needed in an
upcoming calculation. This is an example of
general optimization technique called
latency hiding in which communications and
calculations are overlapped and occur
simultaneously.

� The actual mechanism for prefetching varies
from one machine to another.

46

05/11/08

Prefetching Compiler OptionsPrefetching Compiler Options

GNU:
-fprefetch-loop-arrays
 If supported by the target machine, generate instructions to prefetch
memory to improve the performance of loops that access large arrays.

PGI:
-Mprefetch[=option:n] -Mnoprefetch
 Add (don’t add) prefetch instructions for those processors that support
them (Pentium 4,Opteron); -Mprefetch is default on Opteron; -Mnoprefetch is
default on other processors.

INTEL:
-O3 Enable -O2 optimizations and in addition, enable more aggressive
optimizations such as loop and memory access transformation, and
prefetching.

TEST IF WHAT THEY CLAIM TO DO IS WHAT
THEY ACTUALLY DO

47

05/11/08

Demo: Prefetching ()Demo: Prefetching ()

 program sum
 integer,parameter :: N=5000,ntimes=20000
 real :: x(N),y(N)
 real:: begin,end
 real:: rtime(2)
 common/saver/x,y
!DIR CACHE_ALIGN
 call random_number(x)
 call random_number(y)
begin=dtime(rtime)

 do it=1,ntimes
 do i=1,N
 y(i)=x(i)+i
 end do
 if (mod(it,1000).eq.0) print *,x(1),y(1)
 end do
 end=dtime(rtime)
 print *,' my loop time (s) is ',end
 flop=(N*ntimes)/end*1.0e-6
 print *,' loop runs at ',flop,' MFLOP'
end program sum

48

05/11/08

Loop UnrollingLoop Unrolling
Loop unrolling is an optimization technique which can be applied
to loops which perform calculations on array elements.

Consists of replicating the body of the loop so that calculations
are performed on several array elements during each iteration.

Reason for unrolling is to take advantage of pipelined functional
units. Consecutive elements of the arrays can be in the
functional unit simultaneously.

Programmer usually does not have to unroll loops “by hand” --
compiler options and directives are usually available. Performing
unrolling via directives and/or options is preferable

Code is more portable to other systems

Code is self-documenting and easier to read

Loops with small trip counts or data dependencies should not be
unrolled!

49

05/11/08

Loop Unrolling (con’t)Loop Unrolling (con’t)
Advantages:

Can be done automatically by
compiler.

Makes use of pipelined
functional units.

Makes use of multiple
pipelined functional units on
superscalar processors.

Compiler may be able to pre-
load array operands into
registers, hiding load
latencies.

Disadvantages:

Limited number of FP
registers

Pentium III: 8

Pentium 4: 8

Athlon: 8

Opteron: 4

Itanium: 128(!)

50

05/11/08

Loop Unrolling ExampleLoop Unrolling Example

� Normal loop

do i=1,N

a(i)=b(i)+x*c(i)
enddo

� Manually unrolled loop

do i=1,N,4

a(i)=b(i)+x*c(i)

a(i+1)=b(i+1)+x*c(i+1)

a(i+2)=b(i+2)+x*c(i+2)

a(i+3)=b(i+3)+x*c(i+3)
enddo

51

05/11/08

Loop Unrolling Compiler OptionsLoop Unrolling Compiler Options

GNU compilers:
 -funroll-loops Enable loop unrolling

 -funroll-all-loops Unroll all loops; not recommended

PGI compilers:
 -Munroll Enable loop unrolling

 -Munroll=c:N Unroll loops with trip counts of at least N

 -Munroll=n:M Unroll loops up to M times

Intel compilers:
 -unroll Enable loop unrolling

 -unrollM Unroll loops up to M times

TEST IF WHAT THEY CLAIM TO DO IS WHAT
THEY ACTUALLY DO

52

05/11/08

Loop unrolling directives… Loop unrolling directives…
 program dirunroll
 integer,parameter :: N=1000000
 real,dimension(N):: a,b,c
 real:: begin,end
 real,dimension(2):: rtime
 common/saver/a,b,c
 call random_number(b)
 call random_number(c)
 x=2.5
 begin=dtime(rtime)
!DIR$ UNROLL 4

do i=1,N
a(i)=b(i)+x*c(i)

 end do
 end=dtime(rtime)
 print *,' my loop time (s) is ',(end)
 flop=(2.0*N)/(end)*1.0e-6
 print *,' loop runs at ',flop,' MFLOP'
 print *,a(1),b(1),c(1)
 end s) is 5.9999999E-02
 loop runs at 33.33334 MFLOP
 2.927826 0.9079230 0.8079612

53

05/11/08

Loop Fusion and FissionLoop Fusion and Fission
Fusion: Merge multiple loops into one

Fission: Split one loop into multiple loops

DO

END DO

 DO

 END DO

DO

 END DO

DO

END DO

DO
.....

END DO

DO

END DO

54

05/11/08

Example of Loop FusionExample of Loop Fusion

Potential for Fusion: dependent operations in separate

 loops
Advantage:

� Re-usage of array B()
Disadvantages:

� In total 4 arrays now contend for cache space
� More registers needed

DO i=1,N
 B(i)=2*A(i)
END DO

DO k=1,N
 C(k)=B(k)+D(k)
END DO

DO ii=1,N
 B(ii)=2*A(ii)
 C(ii)=B(ii)+D(ii)
END DO

55

05/11/08

Example of Loop FissionExample of Loop Fission

Potential for Fission: independent operations in a single

 loop
Advantage:

� First loop can be scheduled more efficiently and be parallelised as
well

Disadvantages:
� Less opportunity for out-of-order superscalar execution
� Additional loop created (a minor disadvantage)

DO ii=1,N
 B(ii)=2*A(ii)
END DODO ii=1,N

 B(i)=2*A(i)
 D(i)=D(i-1)+C(i)
END DO

DO ii=1,N
 D(ii)=D(ii-1)+C(ii)
END DO

56

05/11/08

Floating Point DivisionFloating Point Division

� Floating point division is an expensive
operation
– Takes 22-60 CPs to complete (average about 32

CPs)
– Usually not pipelined
– According to the IEEE floating point standard,

divisions must be carried out as such and not
replaced with a multiplication by a reciprocal
(even for division by a constant!)

� A possible optimization technique is to
“relax” the IEEE requirements and replace a
division with multiplication by a reciprocal.
Most compilers do this automatically at
higher levels of optimization.

57

05/11/08

Floating Point Division Compiler Floating Point Division Compiler
OptionsOptions

GNU:
-funsafe-math-optimizations
 Allow optimizations for floating-point arithmetic that (a) assume that
arguments and results are valid and (b) may violate IEEE or ANSI standards.

PGI:
--Kieee -Knoieee (default)
 Perform floating-point operations in strict conformance with the IEEE
754 standard. Some optimizations are disabled with -Kieee, and a more
accurate math library is used. The default -Knoieee uses faster but very
slightly less accurate methods.

INTEL:
--no-prec-div (i32 and i32em)
 Enables optimizations that give slightly less precise results than
full IEEE division. With some optimizations, such as -xN and -xB, the
compiler may change floating-point division computations into
multiplication by the reciprocal of the denominator.

58

05/11/08

Floating Point Division ExampleFloating Point Division Example

� SEE YESTERDAY'S LAB..

59

05/11/08

Floating Point Division With ArraysFloating Point Division With Arrays

� Consider the following loop nest in which the array A(i,j) is
scaled by different factors stored in array B(i):

do j=1,N
do i=1,N

A(i,j)=A(i,j)/B(i)

enddo

enddo

� The compiler can do no automatic optimization to this, because
B(i) is not a scalar. However, you can manually do the following:
– Create a temporary array to hold the inverses of the B(i) array.

– Replace the division in the inner loop with multiplication by the
temporary array.

– The resulting code can be unrolled and/or pipelined.

60

05/11/08

Optimization based on Microprocessor Optimization based on Microprocessor
ArchitecturesArchitectures

� Pipelined Functional Units
� Superscalar Processors

– Processors which have multiple functional units
are said to be superscalar.

� Instruction Set Extensions
– Newer processors have additional instructions

beyond the usual floating point add and multiply
instructions:

� SSE2/SSE3/3DNow ! Etc...

� Cat /proc/cpuinfo..

–

61

05/11/08

Pipelined Functional UnitsPipelined Functional Units
� For the processors in most modern parallel machines,

the circuitry on the chip which performs a given type
of operation on operands in registers is known as a
functional unit.

� Most integer and floating point functional units are
pipelined, meaning that they can have multiple
independent executions of the same instruction
placed in a queue. The idea is that after an initial
startup latency, the functional unit should be able to
generate one result every clock period (CP).

� Each stage of a pipelined operation can be working
simultaneously on different sets of operands.

62

05/11/08

Superscalar ProcessorsSuperscalar Processors
� Processors which have multiple functional

units are said to be superscalar.
� Examples:

– Intel Pentium 3
� 1 Floating point unit
� 1 MMX/SSE unit
� 2 Integer units
� 2 Load/store units

– Intel Pentium 4
� 2 Floating point
� 1 /MMX/SSE units
� 2 Integer units
� 2 Load/store units

63

05/11/08

Pipelining Compiler OptionsPipelining Compiler Options

GNU:
 none

PGI:
--Mvect[=option[,option,...]] -Mnovect (default)
 Pass options to the internal vectorizer.

INTEL:
 none

64

05/11/08

Instruction Set ExtensionsInstruction Set Extensions
Newer processors have additional instructions

beyond the usual floating point add and
multiply instructions:

� Intel MMX (Matrix Math eXtensions):
– introduced in 1997 supported by all current

processors

� Intel SSE (Streaming SIMD Extensions):

– introduced on the Pentium III in 1999

– useless for scientific computation: single
precision

� Intel SSE2 (Streaming SIMD Extensions 2):

– introduced on the Pentium 4 in Dec 2000

65

05/11/08

Instruction Set Extensions (2)Instruction Set Extensions (2)

� AMD 3DNow! :
– introduced in 1998 (extends MMX) "

� AMD 3DNow!+ (or 3DNow! Professional, or
3DNow! Athlon):

– introduced with the Athlon (includes SSE)

� To check what you have on your machine:
– cat /proc/cpuinfo

66

05/11/08

Instruction Set Extension Compiler Instruction Set Extension Compiler
OptionsOptions

GNU:
 -mmmx/no-mmx These switches enable or disable the use of
 built-in functions that allow direct access to -msse
 the MMX, SSE, SSE2, SSE3 and 3Dnow
 -mno-sse extensions of the instruction set
 -msse2 / -mno-sse2
 -msse3 / -mno-sse3
-m3dnow / -mno-3dnow

PGI:
 --fastsse
 Chooses generally optimal flags for a processor that supports
 SSE instructions (Pentium 3/4, AthlonXP/MP, Opteron) and SSE2
 (Pentium 4, Opteron). Use pgf90 -fastsse -help to see the
 equivalent switches.

INTEL:
 -arch SSE Optimizes for Intel Pentium 4 processors with Streaming
 SIMD Extensions (SSE).
 -arch SSE2 Optimizes for Intel Pentium 4 processors with Streaming
 SIMD Extensions 2 (SSE2).

67

05/11/08

General techniquesGeneral techniques

� Blocking/ tiling
� !! Use of optimized libraries !!

68

05/11/08

Blocking for cache (tiling)Blocking for cache (tiling)
Blocking for cache is:

-An optimization that applies for datasets that do not entirely fit in the
(2nd level) data cache

-A way to increase spatial locality of reference i.e. exploit full cache lines

-A way to increase temporal locality of reference i.e. Improves data re-
usage

By way of example, let discuss the transpose of a matrix...

do i=1,n
 do j=1,n
 a(i,j)=b(j,i)
 end do
end do

69

Block algorithm for transposing a matrix:Block algorithm for transposing a matrix:

� block data size= bsize

– mb=n/bsize

– nb=n/bsize

� Code is a little bit
more complicated if

– MOD(n,bize) is not zero

– MOD(m,bize) is not
zero

do ib = 1, nb
 ioff = (ib-1) * bsiz
 do jb = 1, mb
 joff = (jb-1) * bsiz
 do j = 1, bsiz
 do i = 1, bsiz
 buf(i,j) = x(i+ioff, j+joff)
 enddo
 enddo
 do j = 1, bsiz
 do i = 1, j-1
 bswp = buf(i,j)

buf(i,j) = buf(j,i)
 buf(j,i) = bswp
 enddo
 enddo
 do i=1,bsiz
 do j=1,bsiz
 y(j+joff, i+ioff) = buf(j,i)
 enddo
 enddo
 enddo
enddo

70

Results... (Carlo Cavazzoni data)Results... (Carlo Cavazzoni data)

71

05/11/08

Optimizing Matrix Multiply for CachesOptimizing Matrix Multiply for Caches

� Several techniques for making this faster on
modern processors
– heavily studied

� Some optimizations done automatically by
compiler, but can do much better

� In general, you should use optimized
libraries (often supplied by vendor) for this
and other very common linear algebra
operations
– BLAS = Basic Linear Algebra Subroutines

� Other algorithms you may want are not
going to be supplied by vendor, so need to
know these techniques

72

05/11/08

SummarySummary

� Performance programming on uniprocessors requires
– understanding of memory system

� levels, costs, sizes

– understanding of fine-grained parallelism in processor to produce
good instruction mix

– understanding your program

� Compilers are good at instruction level optimization and loop
transformation

� User is responsible to present code in most natural way for
compiler optimizations..

� The techniques work for any architecture, but choosing details
depends on the architecture

� Blocking (tiling) is a basic approach that can be applied to
many matrix algorithms

