
1967-10

Advanced School in High Performance and GRID Computing

KOHLMEYER Axel

3 - 14 November 2008

University of Pennsylvania
Department of Chemistry

231 South 34th Street
PA 19104 Philadelphia

U.S.A.

Mathematical Libraries.
Part I

Mathematical Libraries (Part 1)

ICTP Advanced School in High Performance
and GRID Computing

Axel Kohlmeyer
Center for Molecular Modeling

ICTP, Trieste - Italy, 05 November 2008

Penn
UNIVERSITY of PENNSYLVANIA

coana
Placed Image

Overview

Opportunities to improve application
performance on modern CPUs
Why use performance libraries?
Using / linking libraries
Example:
Using DGEMM in BLAS

There are better ways to log off.

Using Cache Efficiently

Cache is a fast but small memory area
Located on the CPU or close to it
Compensate for discrepancy between CPU
speed (fast) and Memory speed (slow)
Typically transparently, and kept coherent in
multi-core, multi-CPU environment.
The key for good performance is to write code
that maximized the effect of cache memory
The optimal code structure (blocking) depend
on CPU speed, model, and architecture

Using Special Instructions

Modern CPUs contain many special purpose
instructions: MMX,SSE,3d-now,Altivec
Many allow to operate on multiple data
elements in parallel: SIMD, vector instructions
Programming in assembly required to use
them efficiently
In general not portable between different CPU
architectures and models
Significant speedups for Linear Algebra
operations, signal processing.

Using Multi-core / Multi-CPU

Modern CPUs contain multiple CPU cores
Need parallel program (MPI, OpenMP, ...) to
exploit the additional capability
Parallelism in code need rewrites/restructuring
(MPI), or instrumentation (OpenMP)

void)

prii^Tf ("I WM ntftTVwow paperd

What are performance libraries?

Routines for common (math) functions such as
vector and matrix operations, fast Fourier
transform etc. written in a specific way to take
advantage of capabilities of the CPU.
Each CPU type normally has its own version of
the library specifically written or compiled to
maximally exploit that architecture
Make coding easier. Complicated math
operations can be used from existing routines
Increase portability of code as standard (and
well optimized) libraries exist for ALL computing
platforms.

Why use performance libraries?

Compilers can optimize code only to a certain
point (they are dumb). Effective programming
needs deep knowledge of the platform
Performance libraries are designed to use the
CPU in the most efficient way, which is not
necessarily the most straightforward way.
It is normally best to use the libraries supplied
by or recommended by the CPU vendor
On modern hardware they are hugely
important, as they most efficiently exploit
caches, special instructions and parallelism

Standardization

• Subroutines have a
standardized layout

• BLAS is documented
in the source code

• Man pages exist
• Vendor supplied docs
• Different BLAS imple-

mentations have the
same calling sequence

SUBROUTINE DGEMH (TRflNSfl, TRflNSB, M, N , K, flLPHPl, fl, L D f l , B , LDB,
* BETf l , C, LDC >

* . . SCflLAR flRGUMENTS . .
CHflRflCTER*l TRflNSfl, TRflNSB
INTEGER f t , N , K, LDA, LDB, LDC
DOUBLE PRECISION flLPHfl, BETfl

* . . flRRflY flRGUMENTS . .
DOUBLE PRECISION fl< L D f l , * >, B(LDB, *) , C< LDC, * >

*

* PURPOSE

*

* DGEMM PERFORMS ONE OF THE MflTRIX-MflTRIX OPERflTIONS
*
* C := flLPHfl*OP(fl >*OP< B > + BETf l *C,
*
* WHERE OP(X } IS ONE OF
*
* OP(X > = X OR OP(X > = X 1 ,

* flLPHfl PiND BETfl flRE SCflLf lRS, flND fl, B flND C flRE MflTRICES, WITH 0P< fl)
* PIN M BY K MPlTRIX, OP(B > fl K BY N MflTRIX flND C flN M BY N MflTRIX,

* PflRPlMETERS

* TRflNSfl - CHf lRf lCTER*l .
* ON ENTRY, TRflNSfl SPECIFIES THE FORM OF OP< fl > TO BE USED I N
* THE MflTRIX MULTIPLICf lTION flS FOLLONS:

* TRflNSfl = ' N ' OR ' N ' , OP(fl) = fl.

* TRflNSfl = ' T ' OR ' T ' , OP < fl) = fl ' .
*
* TRflNSfl = ' C OR ' C , OP(fl) = fl1.
*
* UNCHflNGED ON E X I T .
*
* TRflNSB - CHARACTER*!;.
* ON ENTRY, TRflNSB SPECIFIES THE FORM OF OP(B) TO BE USED I N
* THE MflTRIX MULTIPLICf lTION flS FOLLONS:
*
* TRflNSB = ' N ' OR ' N ' , OP(B > = B ,

* TRflNSB = ' T ' OR ' T ' , OP (B > = B ' .

How to use libraries in code
Crroussea@samson qmc_code]$ more alldet.f90

subroutine alldet(iopt,indt,nelorb,nelup,neldo,ainv,uinv
l,ainvupb,derl)

implicit none
integer iopt,nelorb,nelup,neldo,nelt,i,j,nelorb5

l,indt
real*8 ainvCnelup,*),ainvupb(nelup,*)

1 ,derl(nelorb,«),winv(nelorb,0:indt+4,»)

nelorb5=(indt+5)«nelorb

call dgemm('N','T',nelup,nelorb,nelup,1.dO,ainv,nelup
1,uinv(1,0,1),nelorb5,0.dO,ainvupb,nelup)

call dgemm('N','N',nelorb,nelorb,neldo,1.dO,uiinv(l,O,nelup+l)
I,nelorb5,ainvupb,nelup,0.dO,derl,nelorb)

Within your code you simply need to call the BLAS/LAPACK routines
As if they are subroutines you would normally write.
Note check the BLAS/LAPACK manuals to know the name of routine
And what variables need to be passed to them and in what order.
NB DGEMM double generic matrix-matrix multiplication

BLAS/LAPACK Implementations

BLAS and LAPACK reference (portable Fortran77)
Intel Math Kernel Library (MKL): BLAS/LAPACK (+FFT)
routines modified for best performance on IA32/x86,
x86_64/AMD64/EM64t, and IA64 based machines.
AMD Math Core Library (ACML): BLAS LAPACK (+FFT)
routines modified for best performance on AMD x86 and
x86_64 based machines
Automatically Tuned Linear Algebra Software (ATLAS):
BLAS and LAPACK routines that use empirical tests to
tune machine specific parameters.
GOTO BLAS, a BLAS implementation with special
optimization for modern (x86/x86_64) CPU architectures

Linking Your Code to Libraries

Linker flags: -L/some/other/dir -Im
-> search for libm.so/libm.a also in /some/dir
Order matters. Ex.: LAPACK uses BLAS
=> -L/usr/local/lib -llapack -Iblas
ATLAS is written C with Ml wrappers:
=> -L/opt/atlas/lib -If77blas -latlas
MKL uses "collections".
Using -Imkl links: Iibmkl_intel_lp64.so,
libmkl_intel_thread.so libmkl_core.so
=> check with "Idd"
Check LD LIBRARY PATH with shared libs

Library Performance Example

O-O 2.6GHz Opteron acml 2.5
E3-O 2.6GHz Opteron goto

2.6GHz Opteron atlas
2.6GHz Opteron acml 2.6
2.6GHz Opteron lapack

500 1000 1500
Matrix Size /N

2000

5
a>
o
c
CO

O - O 3.0Ghz EMT54 2MB cache mkl 7.2
3.DGhz EMT64 2MB cache atlas
3.0Ghz EMT64 2MB cache atlas/threads
3.0Ghz EMT54 2MB cache lapack
3.0Ghz EMT64 IMBcachsmkl 7.2

500 1000 1500
Matrix Size /N

2000

•The absolute and relative performance of a library
is very platform dependent

•Vendor optimized libraries are most of the time faster.

Comments on LAPACK and BLAS

BLAS Levels: 1) vector, 2) vector/matrix, 3) matrix
BLAS Level 1, has N memory operations for N CPU
operations. Whereas Level 3 has 2N2 memory/N4

CPU => more efficient. Thus combining operations
over vectors into matrix-matrix operations is useful
Reference LAPACK/BLAS are better than "coding by
hand", BUT are less efficient than the vendor
supplied versions of the same library or ATLAS.
LAPACK relies heavily on BLAS so the key to good
performance is a fast BLAS.

Beware! Multi-threaded Libraries

FFTW: Thread parallelization through additional
library, needs special management
ATLAS: fixed number of threads compiled in
MKL: Threading with OpenMP
- Uses by default all available cores

=> conflicts with MPI, NUMA-SMP workstations
- Modular, can be tuned to compiler, linker, threads
- Default linking sequence for ifort with Intel threads

=> add -openmp to linker/compiler command
- Serial: -Imkl_intel_lp64 -lmkl_sequential -lmkl_core
- GNU: -Imkl_gf_lp64 -lmkl_gnu_thread -lmkl_core
- See documentation for details (always RTFM!).

