The Abdus Salam
International Centre for Theoretical Physics

T-H0-

1967-10

Advanced School in High Performance and GRID Computing

3 - 14 November 2008

Mathematical Libraries.
Part 1

KOHLMEYER Axel

University of Pennsylvania
Department of Chemistry
231 South 34th Street
PA 19104 Philadelphia
USA.

Strada Costiera | |, 34014 Trieste, ltaly - Tel. +39 040 2240 |1 I; Fax +39 040 224 163 - sci_info@ictp.it, www.ictp.it

Mathematical Libraries (Part 1)

ICTP Advanced School in High Performance
and GRID Computing

Axel Kohlmeyer
Center for Molecular Modeling
ICTP, Trieste — Italy, 05 November 2008

11IHIE

I [

The Abdus Sal == P
e us Salam
International Centre for Theoretical Physics '@" : enn

coana
Placed Image

Overview

» Opportunities to improve application
performance on modern CPUs
* Why use performance libraries?

» Using / linking libraries
» Example:
Using DGEMM in BLAS

“There are better ways to log off.”

Using Cache Efficiently

Cache Is a fast but small memory area
Located on the CPU or close to it
Compensate for discrepancy between CPU
speed (fast) and Memory speed (slow)
Typically transparently, and kept coherent in
multi-core, multi-CPU environment.

The key for good performance is to write code
that maximized the effect of cache memory
The optimal code structure (blocking) depend
on CPU speed, model, and architecture

Using Special Instructions

Modern CPUs contain many special purpose
Instructions: MMX,SSE,3d-now,Altivec

Many allow to operate on multiple data
elements in parallel: SIMD, vector instructions
Programming in assembly required to use
them efficiently

In general not portable between different CPU
architectures and models

Significant speedups for Linear Algebra
operations, signal processing.

I Using Multi-core /| Multi-CPU

* Need parallel program (MPI, OpenMP, ...) to
exploit the additional capability

» Parallelism in code need rewrites/restructuring
(MP1), or instrumentation (OpenMP)

I * Modern CPUs contain multiple CPU cores

T wnCiual Lsfaic.
int mgin(veid)

int count

for (count =13 count<{=500 jcount+s)

printf (L will not Throw paper dirplanes » class."); ‘,
return O3

I What are performance libraries?

* Routines for common (math) functions such as
vector and matrix operations, fast Fourier
transform etc. written in a specific way to take
advantage of capabillities of the CPU.

eEach CPU ty

ne normally

nas Its own version of

the library specifically written or compiled to

maximally ex
» Make coding

nloit that arc

nitecture

easler. Com

nlicated math

operations can be used from existing routines

e Increase portability of code as standard (and
well optimized) libraries exist for ALL computing

platforms.

Why use performance libraries?

Compilers can optimize code only to a certain
point (they are dumb). Effective programming
needs deep knowledge of the platform

Performance libraries are designed to use the
CPU In the most efficient way, which is not
necessarily the most straightforward way.

It iIs normally best to use the libraries supplied
by or recommended by the CPU vendor

On modern hardware they are hugely
important, as they most efficiently exploit
caches, special instructions and parallelism

Standardization

ALPHA. A. LDA. B. LIE.

Subroutines have a
standardized layout
BLAS iIs documented
In the source code
Man pages exist
Vendor supplied docs
Different BLAS imple-
mentations have the
same calling sequence

*

DGEMM PERFORMS A IPERATIONS

C:

WHERE
Or OP¢

‘W' OR N
= 'T"OR 'T'.

‘C'OR

THE FORM OF OF¢ B » TO BE USED IN

| =
| =
| =
| =

How to use libraries in code

[rrousseal@samson gmc_codel$d more alldet .90
subroutine alldet(iopt.indt.nelorb.nelup.neldo,ainv. winv
1.ainvupb.derl)
implicit none
integer iopt.nelorb.nelup.neldo.nelt.i. j.nelorbb
1.indt
real#8 ainv(nelup.#).ainvupb{(nelup.#)
1 .derl{nelorb.#) winv(nelorb.0:indt+4,#)

nelorbb={indt+bh)*nelorb

call dgemm('N','T' nelup.nelorb.nelup.1.d0,ainv.nelup
1.winv(1,0.1).nelorb5.0.d0,ainvupb,nelup)

call dgemm('N’,'N’' nelorb.nelorb.neldo,1.d0, winv{(1l,0, nelup+l)
1.nelorb5.ainvupb.nelup.0.d0,derl,.nelorb)

Within your code you simply need to call the BLAS/LAPACK routines
As if they are subroutines you would normally write.

Note check the BLAS/LAPACK manuals to know the name of routine
And what variables need to be passed to them and in what order.

I BLAS/LAPACK Implementations

* BLAS and LAPACK reference (portable Fortran77)

* Intel Math Kernel Library (MKL): BLAS/LAPACK (+FFT)
routines modified for best performance on 1A32/x86,
x86 64/AMD64/EM64t, and IA64 based machines.

 AMD Math Core Library (ACML): BLAS LAPACK (+FFT)
routines modified for best performance on AMD x86 and
x86 64 based machines

« Automatically Tuned Linear Algebra Software (ATLAS):
BLAS and LAPACK routines that use empirical tests to
tune machine specific parameters.

« GOTO BLAS, a BLAS implementation with special
optimization for modern (x86/x86 _64) CPU architectures

I Linking Your Code to Libraries

Linker flags: -L/some/other/dir -Im

-> search for libm.so/libm.a also in /some/dir
Order matters. Ex.: LAPACK uses BLAS

=> -L/usr/local/lib -llapack -lblas

ATLAS Iis written C with f77 wrappers.

=> - /opt/atlas/lib -If77blas -latlas

MKL uses “collections”.

Using -Imkl links: libmkl_intel [p64.so,
libmkl_intel thread.so libmkl core.so

=> check with “ldd”

Check LD LIBRARY_ PATH with shared libs

Performance /Gflop

Library Performance Example

6 T T | o T T
5F = 85
' 0881 ol
e (." 2 -\
4 ;) = @ 4
[©-0 2 6GHz Opteron acml 2.5 | ©
0 2.6GHz Opteron goto (% ; o a PU ia,.ﬂ o’
3F ©-0 2.6GHz Opteron atlas €3 -nfo -
&-A 2 6GHz Opteron acml 2.6 ‘5 -0 3.0Ghz EMT64 2MB cache mkl 7.2
B V-V 2.6GHz Opteron lapack l = " OO0 3.0Ghz EMT64 2MB cache atlas 7
%mv Q A~ ©=0 3.0Ghz EMT64 2MB cache atlas/threads
2F NV ¥ o 2 &4 3.0Ghz EMT64 2MB cache lapack -
@0 3.0Ghz EMT64 1MB cache mkl 7.2
L - —fA =iy e A S
-IlllllllllllllllI 1IIIIIIIIIIIIIIII
500 1 O_OO _ 1500 2000 500 1000 1500 2000
Matrix Size /N Matrix Size /N

*The absolute and relative performance of a library
IS very platform dependent
*VVendor optimized libraries are most of the time faster.

Comments on LAPACK and BLAS

* BLAS Levels: 1) vector, 2) vector/matrix, 3) matrix
I * BLAS Level 1, has N memory operations for N CPU
operations. Whereas Level 3 has 2N? memory/N*
CPU => more efficient. Thus combining operations
over vectors into matrix-matrix operations is useful
* Reference LAPACK/BLAS are better than “coding by

hand”, BUT are less efficient than the vendor
supplied versions of the same library or ATLAS.

* LAPACK relies heavily on BLAS so the key to good
performance is a fast BLAS.

Beware! Multi-threaded Libraries

 FFTW: Thread parallelization through additional
library, needs special management
 ATLAS: fixed number of threads compiled In

 MKL: Threading with OpenMP

— Uses by default all available cores
=> conflicts with MPIl, NUMA-SMP workstations

- Modular, can be tuned to compiler, linker, threads

— Default linking sequence for ifort with Intel threads
=> add -openmp to linker/compiler command

- Serial: -Imkl_intel [p64 -Imkl_sequential -Imkl_core

- GNU: -Imkl_gf [p64 -Imkl _gnu_thread -Imkl_core

- See documentation for details (always RTFM!).

