
1967-11

Advanced School in High Performance and GRID Computing

HELTAI Luca

3 - 14 November 2008

S.I.S.S.A.
International School for Advanced Studies

Via Beirut 2-4
34014 Trieste

ITALY

Mathematical Libraries.
Part II

Advanced School in

High Performance

and GRID Computing

ICTP HPC School 2008 – Trieste, Italy - November 03-14, 2008

Mathematical LibrariesMathematical Libraries
Part II: Working with PDEsPart II: Working with PDEs

Luca Heltai

SISSA, Trieste

OutilineOutiline

● The Tools
– General PDEs Libraries

– Mesh Generation

– External Solvers

– Visualization Libraries

● The Example
– Mathematical Background

– Analysis of the Example

– Conclusions

Main Tasks to Solve a PDE*Main Tasks to Solve a PDE*

● Choose a Numerical Method!
– FEM – BEM – FD -

● Discretize the Domain
● Generate a Linear(ized) System
● Solve the Linear System
● Visualize the Results

* PDE := Partial Differential Equation

Generic PDEs LibrariesGeneric PDEs Libraries

● FEM: Deal.II, FreeFem, OOFem, Netlib …
● FD: Samrai, ...
● BEM: Deal.II, BEMLib, ...

For a complete (almost...) list of scientific applications and
Libraries on linux, you can take a look at:

http://sal.jyu.fi/

http://sal.jyu.fi/

FEM – BEM: Deal.II FEM – BEM: Deal.II

http://www.dealii.org/

Deal.II (Finite Element Diferential Equations
Analysis Library) is a C++ program library
targeted at the computational solution of partial
diferential equations using adaptive fnite
elements. It uses state-of-the-art programming
techniques to ofer you a modern interface to the
complex data structures and algorithms required.

http://www.dealii.org/

FD – Structured FEM: SAMRAIFD – Structured FEM: SAMRAI

The SAMRAI (Structured Adaptive Mesh Refi nement
Application Infrastructure) library is the code base in CASC
for exploring application, numerical, parallel computing, and
software issues associated with SAMR.

SAMRAI development has been funded primarily by the
DOE Advanced Simulation and Computing (ASC) Program.
This investment is complemented by collaborative efforts
supported by the Laboratory-Directed Research and
Development (LDRD) program.

https://computation.llnl.gov/casc/SAMRAI/index.html

https://computation.llnl.gov/casc/SAMRAI/index.html

Mesh Generation ToolsMesh Generation Tools

● Gmsh:
Gmsh is an automatic 3D fnite element grid generator
with a built-in CAD engine and post-processor. Its design
goal is to provide a simple meshing tool for academic
problems with parametric input and advanced
visualization capabilities.

Gmsh is built around four modules: geometry, mesh, solver and
post-processing. The specifi cation of any input to these modules is
done either interactively using the graphical user interface or in
ASCII text fi les using Gmsh's own scripting language.

http://www.geuz.org/gmsh/

http://www.geuz.org/gmsh/

Mesh Generation ToolsMesh Generation Tools

● Cubit:
CUBIT is an full-featured software toolkit for robust generation of two-
and three-dimensional fi nite element meshes (grids) and geometry
preparation. Its main goal is to reduce the time to generate meshes,
particularly large hex meshes of complicated, interlocking assemblies.

It is a solid-modeler based preprocessor that meshes volumes and
surfaces for fi nite element analysis. Mesh generation algorithms include
quadrilateral and triangular paving, 2D and 3D mapping, hex sweeping
and multi-sweeping, tet meshing, and various special purpose primitives.
CUBIT contains many algorithms for controlling and automating much of
the meshing process, such as automatic scheme selection, interval
matching, sweep grouping and sweep verifi cation, and also includes
state-of-the-art smoothing algorithms.

http://cubit.sandia.gov/

http://cubit.sandia.gov/

Helper LibrariesHelper Libraries

● Metis / ParMetis:

Family of Multilevel Partitioning Algorithms

METIS is a family of programs for partitioning
unstructured graphs and hypergraphs and computing
fll-reducing orderings of sparse matrices.

The underlying algorithms used by METIS are based
on the state-of-the-art multilevel paradigm that has
been shown to produce high quality results and scale
to very large problems.

http://glaros.dtc.umn.edu/gkhome/views/metis/

http://glaros.dtc.umn.edu/gkhome/views/metis/

Helper LibrariesHelper Libraries

● PETSc:

PETSc (Portable, Extensible Toolkit for Scientifc
Computation), pronounced PET-see (the S is silent), is
a suite of data structures and routines for the
scalable (parallel) solution of scientifc applications
modeled by partial diferential equations.

It employs the MPI standard for all message-passing
communication.

http://www-unix.mcs.anl.gov/petsc/petsc-as

http://www-unix.mcs.anl.gov/petsc/petsc-as

Helper LibrariesHelper Libraries
● Trilinos:

The Trilinos Project is an effort to develop algorithms
and enabling technologies within an object-oriented
software framework for the solution of large-scale,
complex multi-physics engineering and scientifi c
problems.
● Framework & Tools

● Software Engineering Technologies and Integration

● Discretizations

● Meshes, Geometry, & Load Balancing

● Scalable Linear Algebra

● Linear & Eigen Solvers

● Embedded Nonlinear Analysis Tools http://trilinos.sandia.gov/

http://trilinos.sandia.gov/

Visualization and Post ProcessingVisualization and Post Processing

● Visit:
VisIt is a free interactive parallel visualization and graphical
analysis tool for viewing scientifi c data on Unix and PC platforms.

 Users can quickly generate visualizations from their data, animate
them through time, manipulate them, and save the resulting
images for presentations. VisIt contains a rich set of visualization
features so that you can view your data in a variety of ways. It can
be used to visualize scalar and vector fi elds defi ned on two- and
three-dimensional (2D and 3D) structured and unstructured
meshes. VisIt was designed to handle very large data set sizes in
the terascale range and yet can also handle small data sets in the
kilobyte range.

https://wci.llnl.gov/codes/visit/home.html

https://wci.llnl.gov/codes/visit/home.html

Visualization and Post ProcessingVisualization and Post Processing

● Paraview:
ParaView is an open-source, multi-platform data analysis
and visualization application. ParaView users can quickly
build visualizations to analyze their data using qualitative
and quantitative techniques. The data exploration can be
done interactively in 3D or programmatically using
ParaView's batch processing capabilities.

ParaView was developed to analyze extremely large
datasets using distributed memory computing resources. It
can be run on supercomputers to analyze datasets of
terascale as well as on laptops for smaller data.

http://www.paraview.org/

http://www.paraview.org/

An Example of Fast Prototyping:An Example of Fast Prototyping:
Parallel Programming for PDEsParallel Programming for PDEs
Using Deal.II + External LibsUsing Deal.II + External Libs

● The mathematical background
● The tools (C++, Deal.II, PETSc, Metis...)
● Analysis of an example
● Conclusions

Today's Example: Today's Example:
Quasi Static Elastic DeformationQuasi Static Elastic Deformation

-div (C grad u) = 0 in B
u = g(t) on Gd
C grad u = 0 on Gn

B

Gd

Gn Gn

Gd

Variational FormulationVariational Formulation

Vd = {v square integrable in B, with first derivative
 square integrable in B, such that v on Gd = 0}

Find u such that u on Gd = g(t) for t in [0,T] and such that

(C grad u, grad v) = 0 for each v in Vd

B

Gd

Gn Gn

Gd

Finite Element FormulationFinite Element Formulation

Vh = {v in Vd such that for each i, v on Ti is
 a bilinear function, and v is continuous on B}

Find uh such that uh on Gd = g(t) and that
(C grad uh, grad v) = 0 for each v in Vh

Gd

Gn Gn

Gd

T1 T2

T3 T3

Vh = span { vi }, i=1,...,N
uh = ui vi (sum convention)

U = [u1, u2, ..., uN]'

FEM solve A U = F

Aij = (C grad vj, grad vi)

vi: piecewise bi-linear,
1 on node i, zero everywhere else...

FEM: Reduce PDEs to FEM: Reduce PDEs to
Linear Systems of EquationsLinear Systems of Equations

FEM RequirementsFEM Requirements

● Subdivide the domain B in small
“Elements” or “cells” Ti

● Assemble the (Sparse) Matrix A and
the right hand side F(t)

● Solve the Linear system A U = F(t) for
a discrete set of times ti

● Output the results U(ti) in a suitable
format

Parallelization of the ProgramParallelization of the Program

● The creation of the domain mesh
 (not implemented so far)

● The domain mesh itself (Metis)
● The assembly of the system Matrix

(Deal.II)
● The solution of the system (PETSc-Trilinos)
● The output of the solution (Deal.II-Visit)

What can we parallelize?

Domain Decomposition ParadigmDomain Decomposition Paradigm

● The domain is partitioned using METIS, an
external tool, wrapped into a Deal.II
function call

● Each subdomain is taken care of by one
processor and all the data is distributed
using wrappers for PETSc Vectors and
Matrices

● Each processor only sees a fraction of the
entire problem

● Global communication is taken care of by
the PETSc linear algebra pack.

Gluing Things Together...Gluing Things Together...

● Deal.II provides wrappers for each of
the mentioned libraries

● The user needs only to be aware of the
domain decomposition techniques, and
all the “dirty” MPI messaging is done
transparently in the background

Reference of the Example ProgramReference of the Example Program

● Example 18 of the Deal.II library
generates one fle of output for EACH
node and for EACH time step

● Example19 of the Deal.II library glues
together the output fles relative to the
same time step

http://www.dealii.org/

http://www.dealii.org/

Master Program: Master Program:
Written Using the Deal.II libraries.Written Using the Deal.II libraries.

● Cycle through the time steps...
 template <int dim>

 void TopLevel<dim>::run ()

 {

 present_time = 0;

 present_timestep = 1;

 end_time = 10;

 timestep_no = 0;

 while (present_time < end_time)

 do_timestep ();

 }

The Single Time Step...The Single Time Step...

 template <int dim>

 void TopLevel<dim>::do_timestep ()

 {

 present_time += present_timestep;

 ++timestep_no;

create_mesh(); // Serial – Divided in subdomains

assemble_system (); // Parallel – Subdomain wise
 solve_linear_system (); // Parallel – Using PETSc

 output_results (); // Parallel - Subdomain wise

 move_mesh (); // Parallel - Subdomain wise

 }

The Mesh Creation and SubdivisionThe Mesh Creation and Subdivision

 template <int dim>

 void TopLevel<dim>::create_mesh ()

 {

 const double inner_radius = 0.8,

 outer_radius = 1;

 // Internal deal.II function

 GridGenerator::cylinder_shell (triangulation,

 inner_radius, outer_radius);

 // Wrapper to the METIS library

 GridTools::partition_triangulation (n_mpi_processes, triangulation);

 }

The Actual MeshThe Actual Mesh

● Generated through Deal.II
subroutines...

● ...and subdivided with METIS

Assembling the System in Assembling the System in
Parallel...Parallel...

 template <int dim>

 void TopLevel<dim>::assemble_system ()

 {

...

for (cell = triangulation.begin();

cell != triangulation.end();

++cell)

 if (cell->subdomain_id() == this_mpi_process)

{

// Here we assemble the local contribution of this cell

// and copy it to the Matrix A in the appropriate places

...

}

A.compress(); // Make sure that the data is coherent
 }

• The passage of informations to A is done through MPI_Send
• This passage is transparent to the deal.II library...

The Sparsity of the MatrixThe Sparsity of the Matrix

● The Generated
Matrix is sparse
(each node is
coupled only with
its neighbors)

● For large N,
iterative solvers
are more efcient

The Solution of the Linear SystemThe Solution of the Linear System

 template <int dim>

 void TopLevel<dim>::solve_linear_system ()

 {

// Conjugate Gradient solver

PETScWrappers::SolverCG cg (mpi_communicator);

// Additive Schwartz Preconditioner
 PETScWrappers::PreconditionBlockJacobi preconditioner(A);

// Perform the solution – in PARALLEL
 cg.solve (A, soution, rhs, preconditioner);

 }

Done using wrappers to PETSc parallel Krilov Subspace Solvers

The Final ResultThe Final Result

The Final Result - 2The Final Result - 2

The Final Result - 3The Final Result - 3

Ex2: Damage in Brittle MaterialsEx2: Damage in Brittle Materials

● Work done by Jonathan Pitt, PSU

Ex2: Damage in Brittle MaterialsEx2: Damage in Brittle Materials

● Work done by Jonathan Pitt, PSU

Ex2: Damage in Brittle MaterialsEx2: Damage in Brittle Materials

● Work done by Jonathan Pitt, PSU

Ex2: Damage in Brittle MaterialsEx2: Damage in Brittle Materials

● Work done by Jonathan Pitt, PSU

Ex2: Damage in Brittle MaterialsEx2: Damage in Brittle Materials

● Work done by Jonathan Pitt, PSU

Ex2: Damage in Brittle MaterialsEx2: Damage in Brittle Materials

● Work done by Jonathan Pitt, PSU

Ex2: Damage in Brittle MaterialsEx2: Damage in Brittle Materials

● Work done by Jonathan Pitt, PSU

Ex2: Damage in Brittle MaterialsEx2: Damage in Brittle Materials

● Work done by Jonathan Pitt, PSU

ConclusionsConclusions

● Fast Prototyping PreExisting Libraries

● Efciency Parallel Libraries

● Customizability Flexible Libraries

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

