

1967-14

Advanced School in High Performance and GRID Computing

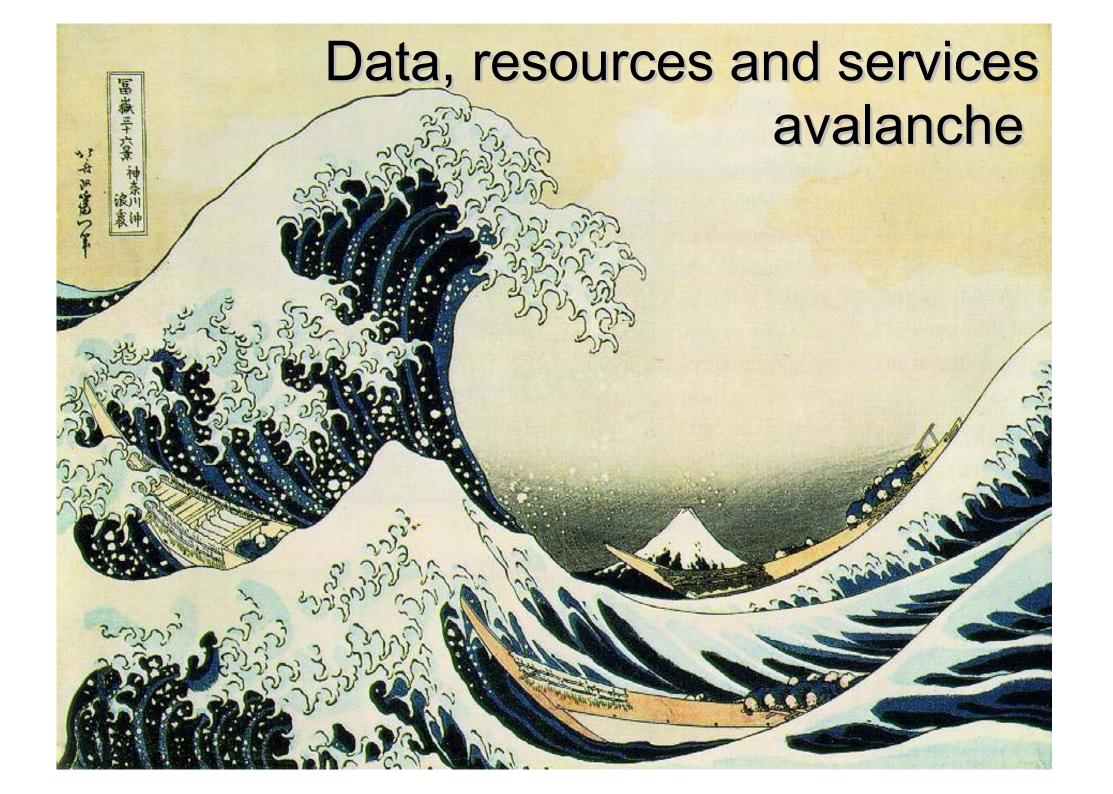
3 - 14 November 2008

Introduction to Grid computing.

TAFFONI Giuliano Osservatorio Astronomico di Trieste/INAF Via G.B. Tiepolo 11 34131 Trieste ITALY

Our heads in the Grid

A brief introduction to Grid Computing


Dr. Giuliano Taffoni INAF - Information Technology Division

New challenges in Science

- Going further in scientific knowledge
 - New high sensitivity sensors and instruments
 - Globally distributed collaborations
- Delocalized knowledge
 - Scientific and technical knowledge is "distributed"
 - Laboratories are distributed
 - Scientific data are distributed

e-science

And in case the lot index and Address of the

White the name i north want same ret to account out Computer of a diversion in Adva.

they has been a group the sportal 100 M the state of the second state of the second state

start date. In cashs state (1991.01) want want by on short or short of sounds and the in a red doors not option they competition or

shall be interest when the state speed-the surface) a s posses who travels at the post block it want a read

ALC: UNK 1997 group man, a pectic of a next observe holdest posters. 112 the H a who he multiplized for each of postchate and manify the and it hand to not aparts tobbar limits where, she

a new an analy setting a 1 to interesting of sored 2. when print a subspacing increase in the rate of see [play at a row of a plotter speed tor]

In sectors service, a standard correlate ball which is serviced, a to be and it brought damains provided at the service of the mentioner period in the tool or course for

State and the second se Pilling .

Baselagy (or sold a place in some

and and invited in the last

spand

spathbind spol/bind/1, st., downed, binding to hold ar band by ar an of by a spath emilant, estimated from min. (1995-5) erant," + hora, chelanted from man.

specification and a provertial specific with the train to the the the second state of the second state of

spell-bound incol/hound's oil, bound by ar as of tor a

spath' check'er, a computer program for exercise the spating of words in an electronic discutant. Also needing check'er. [1381.65]

appropriate investigation in a spectra competition which all the contents for the desting and that the first sector of recepting a sector of recepting and the sector of r

in 1. a perman who spells words 2, ing book, an elementary permanent of permanents of the second of the second to the second to

topel/ar di vi/dari, a. a referenza

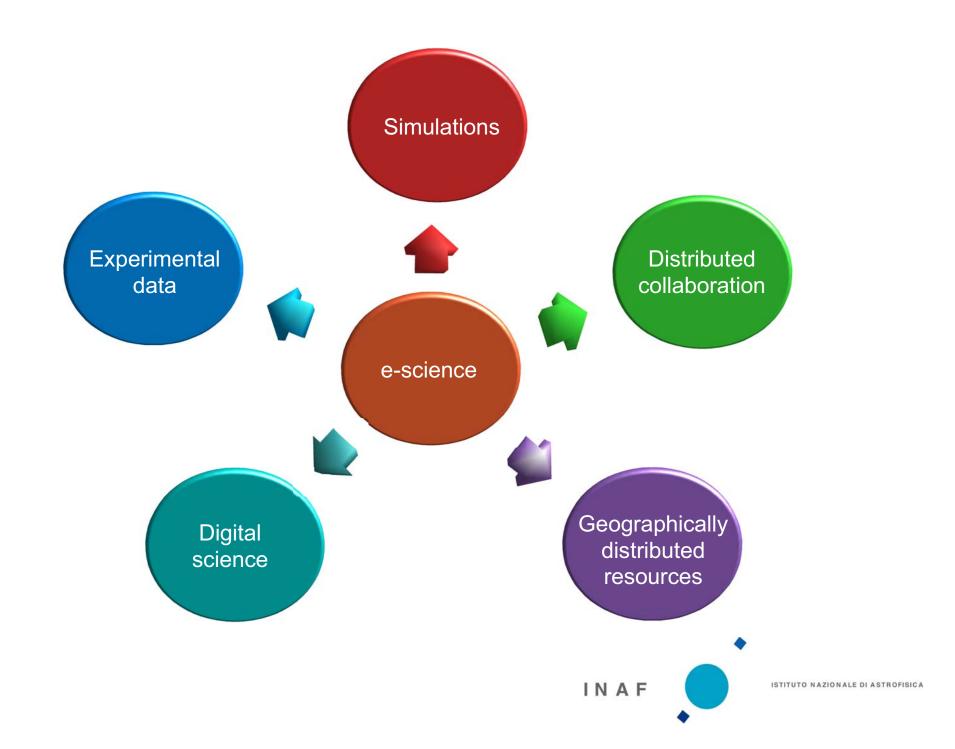
the L the entropy of starts works the second starts of a granter [1000-00, has

spectrum competitions will be the

ISTITUTO NAZIONALE DI ASTROFISICA

"eScience is about global collaboration in key areas of science and the next generation of infrastructure that will enable it."

Dr.John Taylor, Director General of the Research Councils 1998-2003


"The large scale science that will increasingly be carried out through distributed global collaborations enabled by Internet"

From: http://www.nesc.ac.uk/nesc/define.html

"e-Science is a new way of using Internet and its "services" to do science"

...my definition.

Using internet to make science

- On-line publication paper/pre-prints (eg. babbage.sissa.it)
- CPU cycle scavenging (eg. Seti@home, Condor)
- Sloan Digital Sky Survey: online database of astronomical data http://www.sdss.org/
- Google sky

Science and WEB2.0

- Collaboration tools
- Social networking (secondlife. facebook, NING etc.)

A new paradigm

<u>www</u>

share documents in transparent way Accessible through browser Share resources in transparent way Accessible through "middleware"

INAF

ISTITUTO NAZIONALE DI ASTROFISICA

"resource" sharing

- Applications: web services technology
- CPU and Storage: Grid computing, Cloud Computing, etc.
- Data: data Grid, Virtual Observatory, Google Filesystem, etc.
- Instruments: e-Labs, collaboration tools, etc.

What is your paradigm?

Parallel Computing single systems with many processors working on same problem

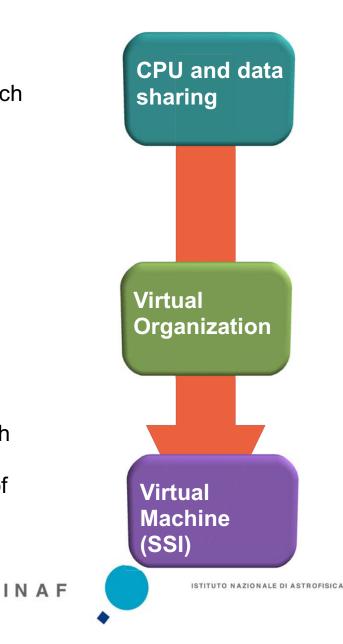
Distributed Computing many systems loosely coupled by a scheduler to work on related problems

INAF

Grid Computing

many systems tightly coupled by software, perhaps geographically distributed, to work together on single problems or on related problems

ISTITUTO NAZIONALE DI ASTROFISICA

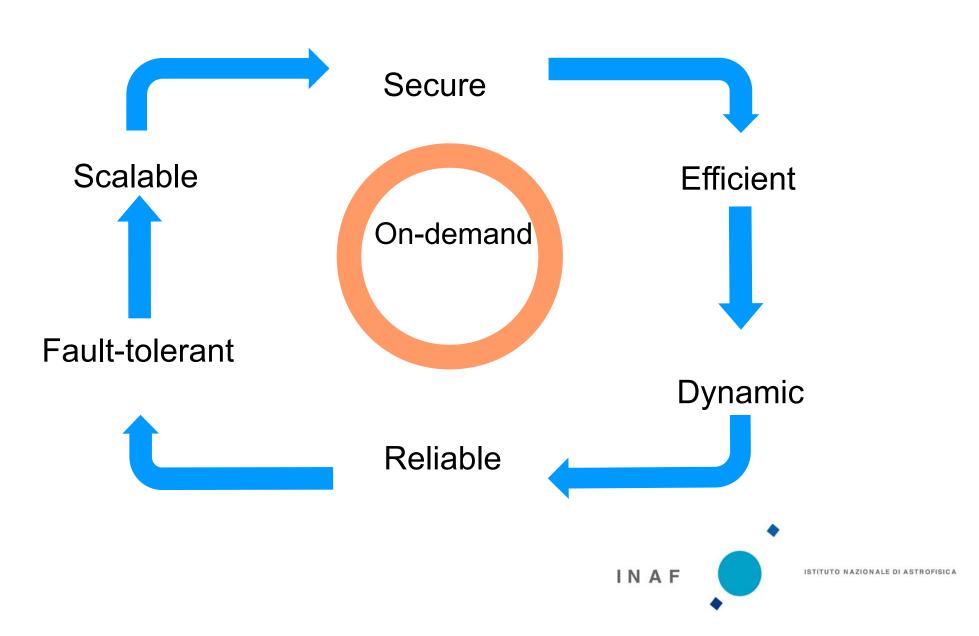

What is Grid Computing?

Some definitions

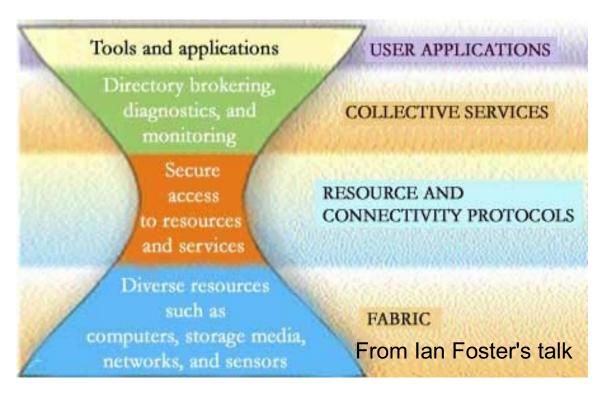
- "a single seamless computational environment in which cycles, communication, and data are shared, and in which the workstation across the continent is no less than one down the hall"
- "wide-area environment that transparently consists of workstations, personal computers, graphic rendering engines, supercomputers and non-traditional devices: e.g., TVs, toasters, etc."
- "[framework for] flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions, and resources"
- "collection of geographically separated resources (people, computers, instruments, databases) connected by a high speed network [...distinguished by...] a software layer, often called middleware, which transforms a collection of independent resources into a single, coherent, virtual machine"

CPU vs collaboration: VO concept

The size and/or complexity of the problem requires that people in several organizations collaborate and share computing resources, data, instruments



VIRTUAL ORGANIZATIONS



Grid Concepts

The Grid Middleware

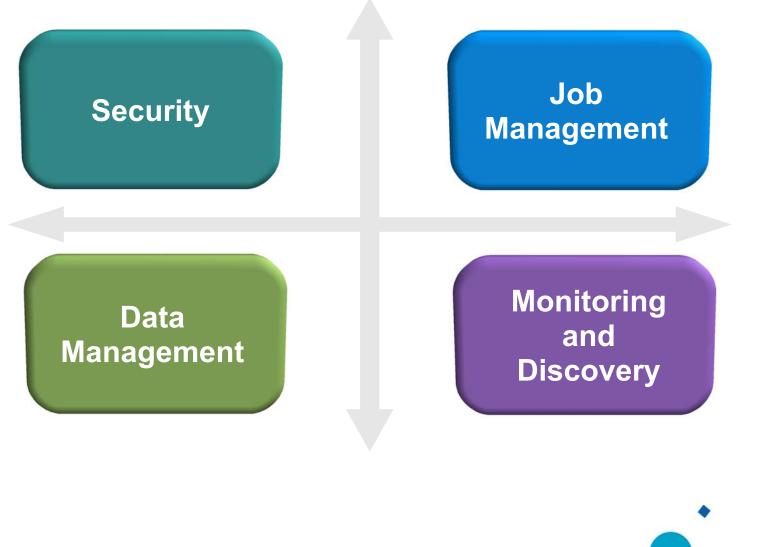
- Its the software layer that glue all the resources
- Everything that lies between the OS and the application

ISTITUTO NAZIONALE DI ASTROFISICA

INAF

Grid Resource

- Storage systems
- Computer clusters
- HPC clusters
- Supercomputers (IBM SP, blue jean, etc)
- Databases
- Keyword: heterogeneous as regards hardware and software


Local vs remote

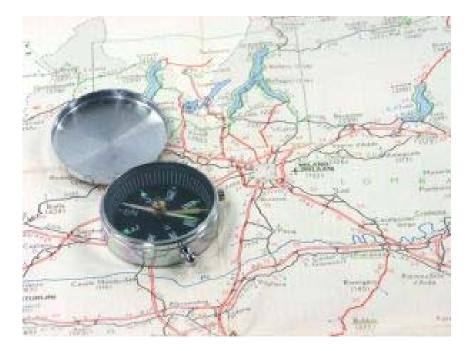
- Resources are locally managed
 - Policies
 - Accountability
 - OS
 - Storage systems
 - Batch systems

- Global policies
- Global accessibility
- Dynamic resource identification
- Remote resource
 utilization

MW generic services

ISTITUTO NAZIONALE DI ASTROFISICA

INAF


Grid Middleware

- Grid is as Operating System:
 - different middleware = different Grid
- Globus alliance (Globus Toolkit)
- gLite (EGEE middleware)
- Unicore (DE)
- GridBus
- GRIA

Explore the middleware

- Bottom-up
 - From low level services to global services
 - From fabric to GRID
 - From Unix user to GRID user

The Resources

- Group of "sites" glued by the Middleware
- Sites are homogeneous as regards OS and SW:
 - Scientific Linux cern 4
- Sites are heterogeneous as regards HW:
 - x86/x86_64 arch
- Some collective services: WMS, DMS etc.

A Grid Site

- Computing Element
- Storage Element
- Worker nodes

- Master node
- Storage system
- Computing nodes

• Scheduler+queue system (torque+maui, LSF, etc.

The Low level services

Security

- Grid is a highly complex system
- Authentication: establishing identity
- Authorization: establishing rights
- Message protection

Passwords are not scalable and secure!!!

What do we require to security?

- Users point of view
 - Easy to use, transparent, single-sign on, no password sharing
- Administrators point of view
 - Define local access control
 - Define local polices
- The Grid Security Infrastructure
 - X509 digital certificates

Job Management

- The challenge: enabling access to heterogeneous resources and managing remote computation
- Create job environment
- Stage files in/out the environment
- Submit a job to the local scheduler
- Monitor job state
- Job description language

Monitor and discovery service

- What is the status of a resource?
- What are the available resources?

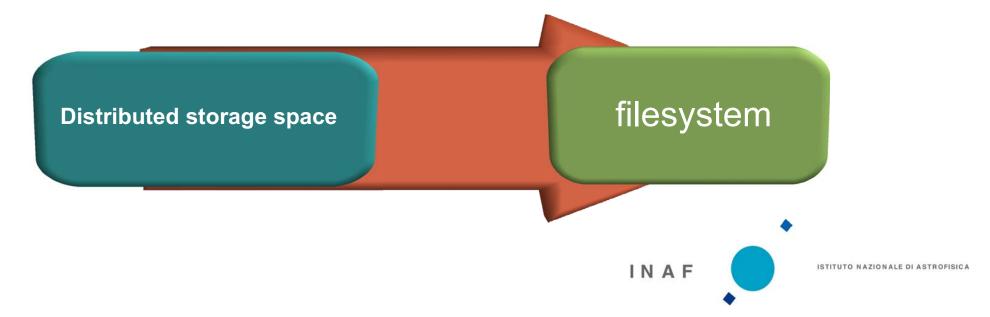
Data Managment

- Requirements
 - Fast: as fast as networks and protocols allow
 - Secure: server must only share files with strongly authenticated clients and no passwords in the clear or similar
 - Robust: Fault tolerant, time-tested protocol

And the winner is...GRIDFTP

High Level Services

Information system


- Which resources are available?
- Where are them?
- What is their status?
- How can I optimize their use?

We need a general information infrastructure: Information System

Data Management

- Where are data/files?
- Which data/file exist?
- How can I reach it?
- Are they accessible by others?
- ex. LFC file catalogue

Job Management

- Cooperation infrastructure for WAN distributed resources:
 - Chaotic system to direct;
 - Locate, book and use the "right" resource

ISTITUTO NAZIONALE DI ASTROFISIC.

INAF

- Scheduling service
- Job description language

Taxonomy of a scheduler

- Centralized systems
- Distributed systems
- Hierarchical systems (hybrid)

Centralized

- Single point of knowledge
- Optimum scheduling
- Single point of failure
- Example: Condor-G

Distributed

- Application delegation method
- Optimum scaling & Fault tolerance
- Sub-optimal resource allocation
- Each Application has to develop a scheduler
- Example: NetSolve

Hybrid

- Distributed systems are scheduled by a centralized one
- Examples: Darwin and Nimrond-G, GridBUS

Applications for Grid computing

Computation intensive

Interactive simulation (climate modeling)

•Large-scale simulation and analysis (atomistic simulations)

•Engineering (parameter studies, optimization model)

Data intensive

•Experimental data analysis (e.g., H.E.P.)

Image & sensor analysis (climate)

Distributed collaboration

•Online instrumentation (microscopes, x-ray) Remote visualization (climate studies, biology)

Grid Projects

Summing up

•Modern Science requires a large amount of computing resources

•GRID computing and HPC are now fundamental tools for scientific research

•The challenge is now to build/use the infrastructure that fits at best your computational requirements.

•HPC and GRID computing are not mutually exclusive but can be both used to address computational resources in a transparent way.

