The Abdus Salam
International Centre for Theoretical Physics Q)

v-0-

1967-17

Advanced School in High Performance and GRID Computing

3 - 14 November 2008

How to benchmark your application

COZZINI Stefano
CNR-INFM Democritos
c/o SISSA
via Beirut 2-4, 34014

Trieste
ITALY

Strada Costiera | |, 34014 Trieste, ltaly - Tel. +39 040 2240 |1 I; Fax +39 040 224 163 - sci_info@ictp.it, www.ictp.it

Advanced School in

Joint DEMOCRITOS/SISSA

H ig h Pe rfo rmance Laboratory for ©-Science

and GRID Computing

The art of henchmarking

Stefano Cozzini
CNR-INFM DEMOCRITOS, Trieste

ICTP HPC School 2008 - Trieste, Italy - November 03-14, 2008

Agenda/ Aims

* Give you the feeling how much is important to
know how your system/
application/computational experiment is
performing..

« Name a few standard benchmarks that can
help you in making/taking a decision

« Show you some tricks and tips how to make
your own benchmarking procedure

e Stop in less than 30 minutes.

benchmark: a definition

a benchmark is the act of running a computer
program, a set of programs, or other operations,
In order to assess the relative performance of an
object, normally by running a number of
standard tests and trials against it

from wikipedia

three important notes:

 no single number can reflect overall
performance

« the only benchmark that matters is the
iIntended workload.

 The purpose of benchmarking is not to get the
best results, but to get consistent repeatable
accurate results that are also the best results.

a few challenges in benchmarking:

« Benchmarking is not easy and often involves
several iterative rounds in order to arrive at
predictable, useful conclusions. Interpretation
of benchmarking data is also extraordinarily
difficult.

- Vendors tend to tune their products specifically for
iIndustry-standard benchmarks. Use extreme
caution in interpreting their results.

- Many benchmarks focus entirely on the speed of
computational performance, neglecting other
iImportant features of a computer system.

- Benchmarks seldom measure real world
performance of mixed workloads — running
multiple applications concurrently in a full, multi-
department environment

What we need to benchmark on a
modern system

« Local: only a single processor
(core) is performing
computations.

« Embarrassingly Parallel -each
processor (core) in the entire
system is performing
computations but they do no
communicate with each other
explicitly.

* Global -all processors in the
system are performing
computations and they explicitly
communicate with each other.

Type of code for benchmark
e Synthetic codes

- Basic hardware and system performance tests

- Meant to determine expected future performance
and serve as surrogate for workload not
represented by application codes

- useful for performance modeling
« Application codes

- Actual application codes as determined by
requirements and usage

- Meant to indicate current performance

- Each application code should have more than one
real test case

A very incomplete list of freely available
benchmark:
 General benchmark:

- HPL Linpack (for Top500)
- HPC Challenge Benchmark:

« a collection of basic benchmark beyond HPL
- NAS benchmark suite
« math kernel implemented both in MPlI and openMP

e Network benchmark:
- Netpipe /Netperf

 tcp/ip protocol and more
- IMB

« MPI protocol
e |/O benchmarks: lozone /bonnie etc..

HPCC benchmark

The HPC Challenge benchmark consists of basically 7 tests:

1. HPL - the Linpack TPP benchmark which measures the floating point rate of
execution for solving a linear system of equations.

2. DGEMM - measures the floating point rate of execution of double precision
real matrix-matrix multiplication.

3. STREAM - a simple synthetic benchmark program that measures sustainable
memory bandwidth (in GB/s) and the corresponding computation rate for simple
vector kernel.

4. PTRANS (parallel matrix transpose) - exercises the communications where
pairs of processors communicate with each other simultaneously. It is a useful test
of the total communications capacity of the network.

5. RandomAccess - measures the rate of integer random updates of memory
(GUPS).

6. FFT - measures the floating point rate of execution of double precision
complex one-dimensional Discrete Fourier Transform (DFT).

7. Communication bandwidth and latency - a set of tests to measure latency and
bandwidth of a number of simultaneous communication patterns; based on b_eff
(effective bandwidth benchmark).

Computational resources to
benchmark

CPU

computational
speed

Computational
resources

Node

Interconnect
bandwidth

Memory
bandwidth

HPCC components

HPL
Matrix Multiply

CPU

computational
speed

Computational
resources

Node

Interconnect
bandwidth

Memory

bandwidth Random & Natural Ring

STREAM Bandwidth & Latency

PTrans, FFT, Random Access

Remember:

« THERE IS NO BENCHMARK THAT SUBSTITUTES
your own code on your dataset

« Measurement should be done by you on your
code !

a few tips to benchmark your application.
(1)

« use /usr/bin/time and take note of all times
- wall time/ user time /sys time

* repeat the same run at least a few time to
estimate the fluctuations of the numbers (this
should be generally within a few percent)

* be sure to be alone on the system you are
using and with no major perturbation on your
cluster

a few tips to benchmark your application.

(2)

« execution runs should be at least in the order
of tens of minutes

* always check the correctness of your scientific
output

* be sure to be alone on the system you are
using and with no major perturbation on your
cluster

Finally..

 Did I mention you need not to trust vendors ?

* Did | mention you need to use your
application ?

