

1967-17

Advanced School in High Performance and GRID Computing

3 - 14 November 2008

How to benchmark your application

COZZINI Stefano CNR-INFM Democritos c/o SISSA via Beirut 2-4, 34014 Trieste ITALY Advanced School in High Performance and GRID Computing

The art of benchmarking

Stefano Cozzini

CNR-INFM DEMOCRITOS, Trieste

ICTP HPC School 2008 – Trieste, Italy - November 03-14, 2008

Agenda/ Aims

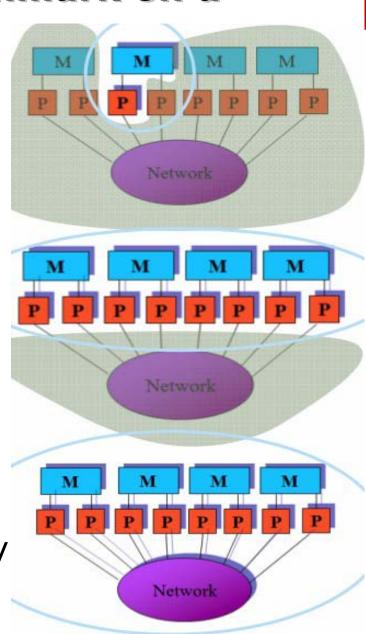
- Give you the feeling how much is important to know how your system/ application/computational experiment is performing..
- Name a few standard benchmarks that can help you in making/taking a decision
- Show you some tricks and tips how to make your own benchmarking procedure
- Stop in less than 30 minutes.

benchmark: a definition

a benchmark is the act of running a computer program, a set of programs, or other operations, in order to assess the relative performance of an object, normally by running a number of standard tests and trials against it

from wikipedia

three important notes:


- no single number can reflect overall performance
- the only benchmark that matters is the intended workload.
- The purpose of benchmarking is not to get the best results, but to get consistent repeatable accurate results that are also the best results.

a few challenges in benchmarking:

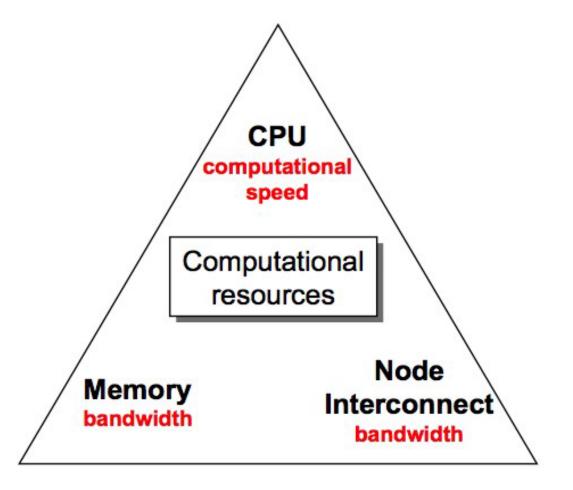
- Benchmarking is not easy and often involves several iterative rounds in order to arrive at predictable, useful conclusions. Interpretation of benchmarking data is also extraordinarily difficult.
 - Vendors tend to tune their products specifically for industry-standard benchmarks. Use extreme caution in interpreting their results.
 - Many benchmarks focus entirely on the speed of computational performance, neglecting other important features of a computer system.
 - Benchmarks seldom measure real world performance of mixed workloads — running multiple applications concurrently in a full, multidepartment environment

What we need to benchmark on a modern system

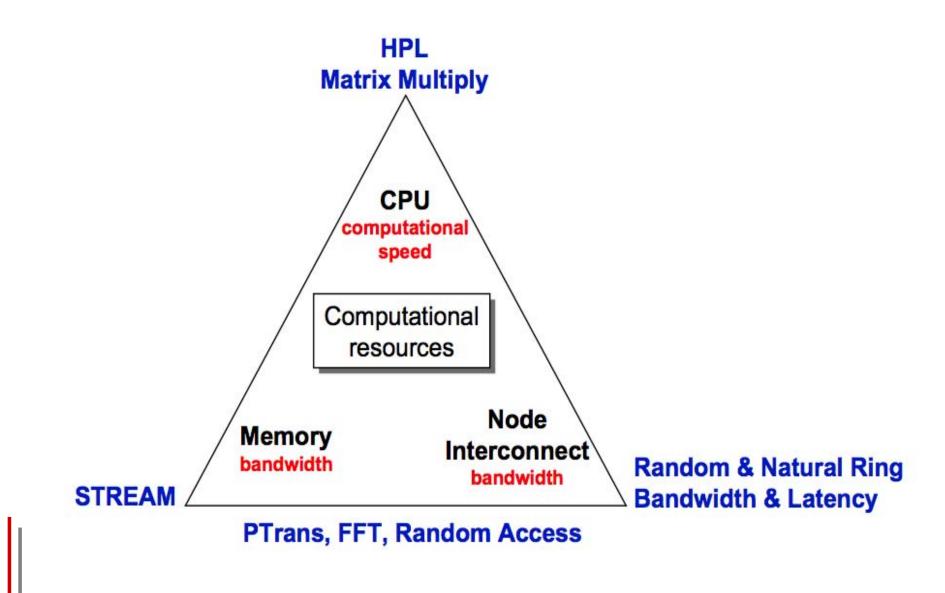
- Local: only a single processor (core) is performing computations.
- Embarrassingly Parallel -each processor (core) in the entire system is performing computations but they do no communicate with each other explicitly.
- Global -all processors in the system are performing computations and they explicitly communicate with each other.

Type of code for benchmark

- Synthetic codes
 - Basic hardware and system performance tests
 - Meant to determine expected future performance and serve as surrogate for workload not represented by application codes
 - useful for performance modeling
- Application codes
 - Actual application codes as determined by requirements and usage
 - Meant to indicate current performance
 - Each application code should have more than one real test case


A very incomplete list of freely available benchmark:

- General benchmark:
 - HPL Linpack (for Top500)
 - HPC Challenge Benchmark:
 - a collection of basic benchmark beyond HPL
 - NAS benchmark suite
 - math kernel implemented both in MPI and openMP
- Network benchmark:
 - Netpipe /Netperf
 - tcp/ip protocol and more
 - IMB
 - MPI protocol
- I/O benchmarks: lozone /bonnie etc..


HPCC benchmark

- The HPC Challenge benchmark consists of basically 7 tests:
- 1. HPL the Linpack TPP benchmark which measures the floating point rate of execution for solving a linear system of equations.
- 2. DGEMM measures the floating point rate of execution of double precision real matrix-matrix multiplication.
- 3. STREAM a simple synthetic benchmark program that measures sustainable memory bandwidth (in GB/s) and the corresponding computation rate for simple vector kernel.
- 4. PTRANS (parallel matrix transpose) exercises the communications where pairs of processors communicate with each other simultaneously. It is a useful test of the total communications capacity of the network.
- 5. RandomAccess measures the rate of integer random updates of memory (GUPS).
- 6. FFT measures the floating point rate of execution of double precision complex one-dimensional Discrete Fourier Transform (DFT).
- 7. Communication bandwidth and latency a set of tests to measure latency and bandwidth of a number of simultaneous communication patterns; based on b_eff (effective bandwidth benchmark).

Computational resources to benchmark

HPCC components

Remember:

- THERE IS NO BENCHMARK THAT SUBSTITUTES your own code on your dataset
- Measurement should be done by you on your code !

a few tips to benchmark your application. (1)

- use /usr/bin/time and take note of all times
 - wall time/ user time /sys time
- repeat the same run at least a few time to estimate the fluctuations of the numbers (this should be generally within a few percent)
- be sure to be alone on the system you are using and with no major perturbation on your cluster

•

a few tips to benchmark your application. (2)

- execution runs should be at least in the order of tens of minutes
- always check the correctness of your scientific output
- be sure to be alone on the system you are using and with no major perturbation on your cluster

Finally..

- Did I mention you need not to trust vendors ?
- Did I mention you need to use your application ?