
1967-17

Advanced School in High Performance and GRID Computing

COZZINI Stefano

3 - 14 November 2008

CNR-INFM Democritos
c/o SISSA

via Beirut 2-4, 34014
Trieste
ITALY

How to benchmark your application

Advanced School in

High Performance

and GRID Computing

ICTP HPC School 2008 – Trieste, Italy - November 03-14, 2008

Advanced School in

High Performance

and GRID Computing

ICTP HPC Schoooll 22000088 – TTrrTTTT iieessttee, IIttaallyy - NNoovveemmbbeerr 0033-1144, 22000088

The art of benchmarking The art of benchmarking

Stefano Cozzini
CNR-INFM DEMOCRITOS, Trieste

Agenda/ Aims Agenda/ Aims

� Give you the feeling how much is important to
know how your system/
application/computational experiment is
performing..

� Name a few standard benchmarks that can
help you in making/taking a decision

� Show you some tricks and tips how to make
your own benchmarking procedure

� Stop in less than 30 minutes.

benchmark: a definition benchmark: a definition

a benchmark is the act of running a computer
program, a set of programs, or other operations,
in order to assess the relative performance of an
object, normally by running a number of
standard tests and trials against it

from wikipedia

three important notes: three important notes:

� no single number can reflect overall
performance

� the only benchmark that matters is the
intended workload.

� The purpose of benchmarking is not to get the
best results, but to get consistent repeatable
accurate results that are also the best results.

 a few challenges in benchmarking:a few challenges in benchmarking:
� Benchmarking is not easy and often involves

several iterative rounds in order to arrive at
predictable, useful conclusions. Interpretation
of benchmarking data is also extraordinarily
difficult.

– Vendors tend to tune their products specifically for
industry-standard benchmarks. Use extreme
caution in interpreting their results.

– Many benchmarks focus entirely on the speed of
computational performance, neglecting other
important features of a computer system.

– Benchmarks seldom measure real world
performance of mixed workloads — running
multiple applications concurrently in a full, multi-
department environment

What we need to benchmark on aWhat we need to benchmark on a
modern systemmodern system

� Local: only a single processor
(core) is performing
computations.

� Embarrassingly Parallel -each
processor (core) in the entire
system is performing
computations but they do no
communicate with each other
explicitly.

� Global -all processors in the
system are performing
computations and they explicitly
communicate with each other.

Type of code for benchmarkType of code for benchmark

� Synthetic codes

– Basic hardware and system performance tests

– Meant to determine expected future performance
and serve as surrogate for workload not
represented by application codes

– useful for performance modeling

� Application codes

– Actual application codes as determined by
requirements and usage

– Meant to indicate current performance

– Each application code should have more than one
real test case

A very incomplete list of freely available A very incomplete list of freely available
benchmark: benchmark:

� General benchmark:

– HPL Linpack (for Top500)

– HPC Challenge Benchmark:

� a collection of basic benchmark beyond HPL

– NAS benchmark suite

� math kernel implemented both in MPI and openMP

� Network benchmark:

– Netpipe /Netperf

� tcp/ip protocol and more

– IMB

� MPI protocol

� I/O benchmarks: Iozone /bonnie etc..

HPCC benchmark HPCC benchmark
� The HPC Challenge benchmark consists of basically 7 tests:

� 1. HPL - the Linpack TPP benchmark which measures the floating point rate of
execution for solving a linear system of equations.

� 2. DGEMM - measures the floating point rate of execution of double precision
real matrix-matrix multiplication.

� 3. STREAM - a simple synthetic benchmark program that measures sustainable
memory bandwidth (in GB/s) and the corresponding computation rate for simple
vector kernel.

� 4. PTRANS (parallel matrix transpose) - exercises the communications where
pairs of processors communicate with each other simultaneously. It is a useful test
of the total communications capacity of the network.

� 5. RandomAccess - measures the rate of integer random updates of memory
(GUPS).

� 6. FFT - measures the floating point rate of execution of double precision
complex one-dimensional Discrete Fourier Transform (DFT).

� 7. Communication bandwidth and latency - a set of tests to measure latency and
bandwidth of a number of simultaneous communication patterns; based on b_eff
(effective bandwidth benchmark).

Computational resources toComputational resources to
benchmarkbenchmark

HPCC componentsHPCC components

Remember:Remember:

� THERE IS NO BENCHMARK THAT SUBSTITUTES
 your own code on your dataset

� Measurement should be done by you on your
code !

a few tips to benchmark your application.a few tips to benchmark your application.
(1)(1)

� use /usr/bin/time and take note of all times

– wall time/ user time /sys time

� repeat the same run at least a few time to
estimate the fluctuations of the numbers (this
should be generally within a few percent)

� be sure to be alone on the system you are
using and with no major perturbation on your
cluster

�

a few tips to benchmark your application.a few tips to benchmark your application.
(2)(2)

� execution runs should be at least in the order
of tens of minutes

� always check the correctness of your scientific
output

� be sure to be alone on the system you are
using and with no major perturbation on your
cluster

�

Finally..Finally..

� Did I mention you need not to trust vendors ?

� Did I mention you need to use your
application ?

