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Different types of parallel 
platforms: Shared Memory 
•  SMP: Symmetric Multiprocessing 

–  Identical processing units working from the same main 
memory 

–  SMP machines are becoming more common in the 
everyday workplace 

•  Dual-socket motherboards are very common, and quad-
sockets are not uncommon 

•  2 and 4 core CPUs are now commonplace 
•  Intel Larabee: 12-48 cores in 2009-2010 

•  ASMP: Asymmetric Multiprocessing 
–  Not all processing units are identical 
–  Cell processor of PS3 
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Parallel Programming Models 

•  Shared Memory 
–  Multiple processors sharing the same memory space 

•  Message Passing 
–   Users make calls that explicitly share information between 

execution entities 
•  Remote Memory Access 

–  Processors can directly access memory on another 
processor 

•  These models are then used to build more 
sophisticated models 
–  Loop Driven 
–  Function Driven Parallel (Task-Level) 
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Shared Memory Programming 

•  SysV memory manipulation 
–  One can actually create, manipulate, shared memory spaces. 

•  Pthreads (Posix Threads) 
–  Lower level Unix library to build multi-threaded programs 

•  OpenMP (www.openmp.org) 
–  Protocol designed to provide automatic parallelization 

through compiler pragmas. 
–  Mainly loop driven parallelism 
–  Best suited to desktop and small SMP computers 

•  Caution: Race Conditions 
–  When two threads are changing the same memory location at 

the same time. 
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Introduction 

•  OpenMP is designed for shared memory systems. 
•  OpenMP is not a programming language 

–  it is a specification, usually implemented through compiler 
directive pragmas 

•  OpenMP is easy to use 
–  achieve parallelism through compiler directives 
–  or the occasional function call 

•  OpenMP is a “quick and dirty” way of parallelizing a 
program. 

•  OpenMP is usually used on existing serial programs 
to achieve moderate parallelism with relatively little 
effort 
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Computational Threads 
•  Tasks on an operating system are layed out on the proecessor as 
independent Processes that do not share memory space 
•  Within a process there can be several shared execution units known 
as Threads. 

Process A 

Thread 
1A 

Thread 
2A 

Thread 
3A 

Process B 

Thread 
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Thread 
2B 

Thread 
3B 
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OpenMP Execution Model 

•  In MPI, all processes are active all the time 
–  Created at the initialization 

•  In OpenMP, execution begins only on the 
master thread.   
–  Child threads are spawned and released as 

needed. 
–  Threads are spawned when program enters a 

parallel region. 
–  Threads are released when program exits a 

parallel region 
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OpenMP Execution Model 
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Parallel Region Example: 
For loop 
Fortran: 

 !$omp parallel do 
 do i = 1, n  

  a(i) = b(i) + c(i)  

 enddo  

C/C++: 
#pragma omp parallel for 
for(i=1; i<=n; i++)  

  a[i] = b[i] + c[i];  

This comment or pragma tells 
openmp compiler to spawn threads 
*and* distribute work among those 
threads 

These actions are combined here but 
they can be specified separately 
between the threads 
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Pros of OpenMP 

•  Because it takes advantage of shared memory, the 
programmer does not need to worry (that much) 
about data placement 

•  Programming model is “serial-like” and thus 
conceptually simpler than message passing 

•  Compiler directives are generally simple and easy 
to use 

•  Legacy serial code does not need to be rewritten 
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Cons of OpenMP 

•  Codes can only be run in shared memory 
environments! 
–  In general, shared memory machines beyond ~8 

CPUs are much more expensive than distributed 
memory ones, so finding a shared memory 
system to run on may be difficult 

•  Compiler must support OpenMP 
–  whereas MPI can be installed anywhere 
–  However, gcc 4.2 now supports OpenMP 
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Cons of OpenMP 

•  In general, only moderate speedups can be 
achieved. 

–  Because OpenMP codes tend to have serial-
only portions, Amdahl’s Law prohibits 
substantial speedups 

•  Amdahl’s Law: 
F = Fraction of serial execution time that 

cannot be      
   parallelized 

N = Number of processors 

Execution time = 

If you have big 
loops that dominate 
execution time, 
these are ideal 
targets for OpenMP 
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Goals of this lecture 

•  Exposure to OpenMP 
–  Understand where OpenMP may be useful to you now 
–  Or perhaps 4 years from now when you need to parallelize 

a serial program, you will say, “Hey! I can use OpenMP.” 

•  Avoidance of common pitfalls 
–  How to make your OpenMP actually get the same answer 

that it did in serial 
–  A few tips on dramatically increasing the performance of 

OpenMP applications 
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Compiling and Running OpenMP 

•  True64:     -mp 
•  SGI IRIX:    -mp  
•  IBM AIX:    -qsmp=omp  
•  Portland Group:             -mp  
•  Intel:                -openmp 
•  gcc (4.2)                        -fopenmp 
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Compiling and Running OpenMP 

•  OMP_NUM_THREADS environment 
variable sets the number of processors the 
OpenMP program will have at its disposal. 

•  Example script 
 #!/bin/tcsh 
 setenv OMP_NUM_THREADS 4 
 mycode < my.in > my.out  
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Divide various 
sections of code 
between threads 

OpenMP Basics: 
2 Approaches to Parallelism 

Divide loop iterations 
among threads: We 
will focus mainly on 
loop level parallelism 
in this lecture 
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Sections: Functional parallelism 

#pragma omp parallel 
{ 

 #pragma omp sections 
 { 
  #pragma omp section 
   block1 
  #pragma omp section 
   block2 
 } 

} Image from: https://computing.llnl.gov/
tutorials/openMP 
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Parallel DO/for: Loop level parallelism 

Fortran: 
 !$omp parallel do 
 do i = 1, n  

  a(i) = b(i) + c(i)  

 enddo  

C/C++: 
#pragma omp parallel for 
for(i=1; i<=n; i++)  

  a[i] = b[i] + c[i];  

Image from: https://computing.llnl.gov/
tutorials/openMP 
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Pitfall #1: Data dependencies 

•  Consider the following code: 
a[0] = 1; 
for(i=1; i<5; i++)  
 a[i] = i + a[i-1];  

•  There are dependencies between loop 
iterations.  

•  Sections of loops split between threads will 
not necessarily execute in order 

•  Out of order loop execution will result in 
undefined behavior 
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Pitfall #1: Data dependencies 

3 simple rules for data dependencies 
1.  All assignments are performed on arrays.  
2.  Each element of an array is assigned to by at 

most one iteration.  
3.  No loop iteration reads array elements 

modified by any other iteration.  
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Avoiding dependencies by using 
Private Variables (Pitfall #1.5) 

•  Consider the following loop: 
#pragma omp parallel for  
{  
 for(i=0; i<n; i++){  
  temp = 2.0*a[i];  
  a[i] = temp;  
  b[i] = c[i]/temp;  
 }  

}  

•  By default, all threads share a common address 
space.  Therefore, all threads will be modifying temp 
simultaneously 
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Avoiding dependencies by using 
Private Variables (Pitfall #1.5) 
•  The solution is to make temp a thread-private 

variable by using the “private” clause: 
#pragma omp parallel for private(temp) 
{  
 for(i=0; i<n; i++){  
  temp = 2.0*a[i];  
  a[i] = temp;  
  b[i] = c[i]/temp;  
 }  
}  
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Avoiding dependencies by using 
Private Variables (Pitfall #1.5) 
•  Default OpenMP behavior is for variables to be 

shared.  However, sometimes you may wish to 
make the default private and explicitly declare 
your shared variables (but only in Fortran!): 

!$omp parallel do default(private) shared(n,a,b,c) 
 do i=1,n 
  temp = 2.0*a(i)  
  a(i) = temp 
  b(i) = c(i)/temp;  
 enddo 

!$omp end parallel do 



© 2008 Pittsburgh Supercomputing Center 

Private variables 

•  Note that the loop iteration variable (e.g. i in 
previous example) is private by default 

•  Caution: The value of any variable specified 
as private is undefined both upon entering 
and leaving the construct in which it is 
specified 

•  Use firstprivate and lastprivate clauses to 
retain values of variables declared as private 



© 2008 Pittsburgh Supercomputing Center 

Use of function calls within 
parallel loops 

•  In general, the compiler will not parallelize a loop that 
involves a function call unless is can guarantee that 
there are no dependencies between iterations. 
–  sin(x) is OK, for example, if x is private. 

•  A good strategy is to inline function calls within loops.  
If the compiler can inline the function, it can usually 
verify lack of dependencies. 

•  System calls do not parallelize!!! 
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Pitfall #2: Updating shared 
variables simultaneously 

Consider the following serial code: 

the_max = 0; 
for (i=0;i<n; i++)  
 the_max = max(myfunc(a[i]), the_max); 

•  This loop can be executed in any order, however the_max is 
modified every loop iteration. 

•  Use “critical” clause to specify code segments that can only be 
executed by one thread at a time: 

#pragma omp parallel for private(temp) 
{  
 for(i=0; i<n; i++){  
  temp = myfunc(a[i]);  
  #pragma omp critical 
  the_max = max(temp, the_max);  
 }  

} 
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Reduction operations 

•  Now consider a global sum: 

for(i=0; i<n; i++) 
 sum = sum + a[i];  

•  This can be done by defining “critical” sections 
–  Very very slow and unscalable. 

•  OpenMP provides a reduction clause (much faster): 
#pragma omp parallel for reduction(+:sum) 
{ 
 for(i=0; i<n; i++) 
  sum = sum + a[i]; 

}  
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Reduction operations 

•  C/C++ reduction-able operators (and initial values): 
–  +  (0) 
–  - (0) 
–  * (1) 
–  &  (~0) 
–  |  (0) 
–  ^  (0) 
–  && (1) 
–  ||  (0) 
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Pitfall #3: Parallel overhead 

•  Spawning and releasing threads results in 
significant overhead. 
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Pitfall #3: Parallel overhead 
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Pitfall #3: Parallel Overhead 

•  Spawning and releasing threads results in 
significant overhead. 

•  Therefore, you want to make your parallel 
regions as large as possible  
–  Parallelize over the largest loop that you can 

(even though it will involve more work to declare 
all of the private variables and eliminate 
dependencies) 

–  Coarse granularity is your friend! 
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Separating “Parallel” and “For” directives to 
reduce overhead 
•  In the following example, threads are spawned only once, not 

once per loop: 
#pragma omp parallel {  
 #pragma omp for  
 for(i=0; i<maxi; i++)  
  a[i] = b[i]; 
 #pragma omp for  
 for(j=0; j<maxj; j++) 
  c[j] = d[j]; 

}  

!$omp parallel 
!$omp do 
do i=1,maxi 

 a(i) = b(i) 
enddo 
!$omp end do !(optional) 

!$omp do  
do i=1,maxj   

 c(j) = d(j) 
enddo 
!$omp end do !(optional) 
!$omp end parallel !
(required) 
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Use “nowait” to avoid barriers 

•  At the end of every loop is an implied barrier.  
•  Use “nowait” to remove the barrier at the end of the 

first loop: 
#pragma omp parallel {  
 #pragma omp for nowait  
 for(i=0; i<maxi; i++)  
  a[i] = b[i]; 
 #pragma omp for  
 for(j=0; j<maxj; j++) 
  c[j] = d[j]; 

}  

Barrier removed by “nowait” clause 
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Use “nowait” to avoid barriers 

In Fortran, “nowait” goes at end of loop: 
!$omp parallel 
!$omp do 
do i=1,maxi 
 a(i) = b(i) 

enddo 
!$omp end do nowait 

!$omp do  
do i=1,maxj   
 c(j) = d(j) 

enddo 
!$omp end do 
!$omp end parallel 

Barrier removed by “nowait” clause 



© 2008 Pittsburgh Supercomputing Center 

Other useful directives to avoid 
releasing and spawning threads 
•  #pragma omp master 

 !$omp master ... !$omp end master 
–  Denotes codes within a parallel region to only be executed 

by the master 

•  #pragma omp single 
–  Denotes code that will be performed only one thread 
–  Useful for overlapping serial segments with parallel 

computation. 

•  #pragma omp barrier 
–  Sets a global barrier within a parallel region 
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Thread stack 

•  Each thread has its own memory region 
called the thread stack 

•  This can grow to be quite large, so default 
size may not be enough 

•  This can be increased (e.g. to 16 MB): 
csh: 
limit stacksize 16000; setenv KMP_STACKSIZE 16000000 
bash: 
ulimit -s 16000; export KMP_STACKSIZE=16000000 
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Useful OpenMP Functions 

•  void omp_set_num_threads(int num_threads) 
–  Sets the number of OpenMP threads (overrides 

OMP_NUM_THREADS) 
•  int omp_get_thread_num() 

–  Returns the number of the current thread 
•  int omp_get_num_threads() 

–  Returns the total number of threads currently 
participating in a parallel region 

–  Returns “1” if executed in a serial region 
•  For portability, surround these functions with 
#ifdef _OPENMP 

•  #include <omp.h> 
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Optimization: Scheduling 

•  OpenMP partitions workload into “chunks” for 
distribution among threads 

•  Default strategy is static: 
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Optimization: Scheduling 

•  This strategy has the least amount of overhead 
•  However, if not all iterations take the same amount of 

time, this simple strategy will lead to load imbalance. 
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Optimization: Scheduling 

•  OpenMP offers a variety of scheduling 
strategies: 
–  schedule(static,[chunksize]) 

•  Divides workload into equal-sized chunks 
•  Default chunksize is Nwork/Nthreads 

–  Setting chunksize to less than this will result in chunks 
being assigned in an interleaved manner 

•  Lowest overhead 
•  Least optimal workload distribution 
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Optimization: Scheduling 

–  schedule(dynamic,[chunksize]) 
•  Dynamically assigned chunks to threads 
•  Default chunksize is 1 
•  Highest overhead 
•  Optimal workload distribution 

–  schedule(guided,[chunksize]) 
•  Starts with big chunks proportional to (number of 

unassigned iterations)/(number of threads), then 
makes them progressively smaller until chunksize is 
reached 

•  Attempts to seek a balance between overhead and 
workload optimization 
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Optimization: Scheduling 

–  schedule(runtime) 
•  Scheduling can be selected at runtime using 

OMP_SCHEDULE 
•  e.g. setenv OMP_SCHEDULE “guided, 100” 

–  In practice, often use: 
•  Default scheduling (static, large chunks) 
•  Guided with default chunksize 

–  Experiment with your code to determine optimal 
strategy 
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What we have learned 

•  How to compile and run OpenMP progs 
•  Private vs. shared variables 
•  Critical sections and reductions for updating 

scalar shared variables 
•  Techniques for minimizing thread spawning/

exiting overhead 
•  Different scheduling strategies 
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Summary 

•  OpenMP is often the easiest way to achieve 
moderate parallelism on shared memory 
machines 

•  In practice, to achieve decent scaling, will 
probably need to invest some amount of 
effort in tuning your application. 

•  More information available at: 
–  https://computing.llnl.gov/tutorials/openMP/  
–  http://www.openmp.org 
–  Using OpenMP, MIT Press, 2008 


