
1967-19

Advanced School in High Performance and GRID Computing

BROWN Shawn T.

3 - 14 November 2008

Carnegie Mellon University
Pittsburgh Supercomputing Center

300 S. Craig Street
U.S.A.

Introduction to OpenMP
(first part)

© 2008 Pittsburgh Supercomputing Center

Introduction to OpenMP

Shawn T. Brown

Scientific Specialist
Pittsburgh Supercomputing Center

Jeff Gardner (U. of Washington)
Phil Blood (PSC)

© 2008 Pittsburgh Supercomputing Center

Different types of parallel platforms:
Distributed Memory

© 2008 Pittsburgh Supercomputing Center

Different types of parallel platforms:
Shared Memory

© 2008 Pittsburgh Supercomputing Center

Different types of parallel
platforms: Shared Memory
•  SMP: Symmetric Multiprocessing

–  Identical processing units working from the same main
memory

–  SMP machines are becoming more common in the
everyday workplace

•  Dual-socket motherboards are very common, and quad-
sockets are not uncommon

•  2 and 4 core CPUs are now commonplace
•  Intel Larabee: 12-48 cores in 2009-2010

•  ASMP: Asymmetric Multiprocessing
–  Not all processing units are identical
–  Cell processor of PS3

© 2008 Pittsburgh Supercomputing Center

Parallel Programming Models

•  Shared Memory
–  Multiple processors sharing the same memory space

•  Message Passing
–  Users make calls that explicitly share information between

execution entities
•  Remote Memory Access

–  Processors can directly access memory on another
processor

•  These models are then used to build more
sophisticated models
–  Loop Driven
–  Function Driven Parallel (Task-Level)

© 2008 Pittsburgh Supercomputing Center

Shared Memory Programming

•  SysV memory manipulation
–  One can actually create, manipulate, shared memory spaces.

•  Pthreads (Posix Threads)
–  Lower level Unix library to build multi-threaded programs

•  OpenMP (www.openmp.org)
–  Protocol designed to provide automatic parallelization

through compiler pragmas.
–  Mainly loop driven parallelism
–  Best suited to desktop and small SMP computers

•  Caution: Race Conditions
–  When two threads are changing the same memory location at

the same time.

© 2008 Pittsburgh Supercomputing Center

Introduction

•  OpenMP is designed for shared memory systems.
•  OpenMP is not a programming language

–  it is a specification, usually implemented through compiler
directive pragmas

•  OpenMP is easy to use
–  achieve parallelism through compiler directives
–  or the occasional function call

•  OpenMP is a “quick and dirty” way of parallelizing a
program.

•  OpenMP is usually used on existing serial programs
to achieve moderate parallelism with relatively little
effort

© 2008 Pittsburgh Supercomputing Center

Computational Threads
•  Tasks on an operating system are layed out on the proecessor as
independent Processes that do not share memory space
•  Within a process there can be several shared execution units known
as Threads.

Process A

Thread
1A

Thread
2A

Thread
3A

Process B

Thread
1B

Thread
2B

Thread
3B

© 2008 Pittsburgh Supercomputing Center

OpenMP Execution Model

•  In MPI, all processes are active all the time
–  Created at the initialization

•  In OpenMP, execution begins only on the
master thread.
–  Child threads are spawned and released as

needed.
–  Threads are spawned when program enters a

parallel region.
–  Threads are released when program exits a

parallel region

© 2008 Pittsburgh Supercomputing Center

OpenMP Execution Model

© 2008 Pittsburgh Supercomputing Center

Parallel Region Example:
For loop
Fortran:

 !$omp parallel do
 do i = 1, n

 a(i) = b(i) + c(i)

 enddo

C/C++:
#pragma omp parallel for
for(i=1; i<=n; i++)

 a[i] = b[i] + c[i];

This comment or pragma tells
openmp compiler to spawn threads
and distribute work among those
threads

These actions are combined here but
they can be specified separately
between the threads

© 2008 Pittsburgh Supercomputing Center

Pros of OpenMP

•  Because it takes advantage of shared memory, the
programmer does not need to worry (that much)
about data placement

•  Programming model is “serial-like” and thus
conceptually simpler than message passing

•  Compiler directives are generally simple and easy
to use

•  Legacy serial code does not need to be rewritten

© 2008 Pittsburgh Supercomputing Center

Cons of OpenMP

•  Codes can only be run in shared memory
environments!
–  In general, shared memory machines beyond ~8

CPUs are much more expensive than distributed
memory ones, so finding a shared memory
system to run on may be difficult

•  Compiler must support OpenMP
–  whereas MPI can be installed anywhere
–  However, gcc 4.2 now supports OpenMP

© 2008 Pittsburgh Supercomputing Center

Cons of OpenMP

•  In general, only moderate speedups can be
achieved.

–  Because OpenMP codes tend to have serial-
only portions, Amdahl’s Law prohibits
substantial speedups

•  Amdahl’s Law:
F = Fraction of serial execution time that

cannot be
 parallelized

N = Number of processors

Execution time =

If you have big
loops that dominate
execution time,
these are ideal
targets for OpenMP

© 2008 Pittsburgh Supercomputing Center

Goals of this lecture

•  Exposure to OpenMP
–  Understand where OpenMP may be useful to you now
–  Or perhaps 4 years from now when you need to parallelize

a serial program, you will say, “Hey! I can use OpenMP.”

•  Avoidance of common pitfalls
–  How to make your OpenMP actually get the same answer

that it did in serial
–  A few tips on dramatically increasing the performance of

OpenMP applications

© 2008 Pittsburgh Supercomputing Center

Compiling and Running OpenMP

•  True64: -mp
•  SGI IRIX: -mp
•  IBM AIX: -qsmp=omp
•  Portland Group: -mp
•  Intel: -openmp
•  gcc (4.2) -fopenmp

© 2008 Pittsburgh Supercomputing Center

Compiling and Running OpenMP

•  OMP_NUM_THREADS environment
variable sets the number of processors the
OpenMP program will have at its disposal.

•  Example script
 #!/bin/tcsh
 setenv OMP_NUM_THREADS 4
 mycode < my.in > my.out

© 2008 Pittsburgh Supercomputing Center

Divide various
sections of code
between threads

OpenMP Basics:
2 Approaches to Parallelism

Divide loop iterations
among threads: We
will focus mainly on
loop level parallelism
in this lecture

© 2008 Pittsburgh Supercomputing Center

Sections: Functional parallelism

#pragma omp parallel
{

 #pragma omp sections
 {
 #pragma omp section
 block1
 #pragma omp section
 block2
 }

} Image from: https://computing.llnl.gov/
tutorials/openMP

© 2008 Pittsburgh Supercomputing Center

Parallel DO/for: Loop level parallelism

Fortran:
 !$omp parallel do
 do i = 1, n

 a(i) = b(i) + c(i)

 enddo

C/C++:
#pragma omp parallel for
for(i=1; i<=n; i++)

 a[i] = b[i] + c[i];

Image from: https://computing.llnl.gov/
tutorials/openMP

© 2008 Pittsburgh Supercomputing Center

Pitfall #1: Data dependencies

•  Consider the following code:
a[0] = 1;
for(i=1; i<5; i++)
 a[i] = i + a[i-1];

•  There are dependencies between loop
iterations.

•  Sections of loops split between threads will
not necessarily execute in order

•  Out of order loop execution will result in
undefined behavior

© 2008 Pittsburgh Supercomputing Center

Pitfall #1: Data dependencies

3 simple rules for data dependencies
1.  All assignments are performed on arrays.
2.  Each element of an array is assigned to by at

most one iteration.
3.  No loop iteration reads array elements

modified by any other iteration.

© 2008 Pittsburgh Supercomputing Center

Avoiding dependencies by using
Private Variables (Pitfall #1.5)

•  Consider the following loop:
#pragma omp parallel for
{
 for(i=0; i<n; i++){
 temp = 2.0*a[i];
 a[i] = temp;
 b[i] = c[i]/temp;
 }

}

•  By default, all threads share a common address
space. Therefore, all threads will be modifying temp
simultaneously

© 2008 Pittsburgh Supercomputing Center

Avoiding dependencies by using
Private Variables (Pitfall #1.5)
•  The solution is to make temp a thread-private

variable by using the “private” clause:
#pragma omp parallel for private(temp)
{
 for(i=0; i<n; i++){
 temp = 2.0*a[i];
 a[i] = temp;
 b[i] = c[i]/temp;
 }
}

© 2008 Pittsburgh Supercomputing Center

Avoiding dependencies by using
Private Variables (Pitfall #1.5)
•  Default OpenMP behavior is for variables to be

shared. However, sometimes you may wish to
make the default private and explicitly declare
your shared variables (but only in Fortran!):

!$omp parallel do default(private) shared(n,a,b,c)
 do i=1,n
 temp = 2.0*a(i)
 a(i) = temp
 b(i) = c(i)/temp;
 enddo

!$omp end parallel do

© 2008 Pittsburgh Supercomputing Center

Private variables

•  Note that the loop iteration variable (e.g. i in
previous example) is private by default

•  Caution: The value of any variable specified
as private is undefined both upon entering
and leaving the construct in which it is
specified

•  Use firstprivate and lastprivate clauses to
retain values of variables declared as private

© 2008 Pittsburgh Supercomputing Center

Use of function calls within
parallel loops

•  In general, the compiler will not parallelize a loop that
involves a function call unless is can guarantee that
there are no dependencies between iterations.
–  sin(x) is OK, for example, if x is private.

•  A good strategy is to inline function calls within loops.
If the compiler can inline the function, it can usually
verify lack of dependencies.

•  System calls do not parallelize!!!

© 2008 Pittsburgh Supercomputing Center

Pitfall #2: Updating shared
variables simultaneously

Consider the following serial code:

the_max = 0;
for (i=0;i<n; i++)
 the_max = max(myfunc(a[i]), the_max);

•  This loop can be executed in any order, however the_max is
modified every loop iteration.

•  Use “critical” clause to specify code segments that can only be
executed by one thread at a time:

#pragma omp parallel for private(temp)
{
 for(i=0; i<n; i++){
 temp = myfunc(a[i]);
 #pragma omp critical
 the_max = max(temp, the_max);
 }

}

© 2008 Pittsburgh Supercomputing Center

Reduction operations

•  Now consider a global sum:

for(i=0; i<n; i++)
 sum = sum + a[i];

•  This can be done by defining “critical” sections
–  Very very slow and unscalable.

•  OpenMP provides a reduction clause (much faster):
#pragma omp parallel for reduction(+:sum)
{
 for(i=0; i<n; i++)
 sum = sum + a[i];

}

© 2008 Pittsburgh Supercomputing Center

Reduction operations

•  C/C++ reduction-able operators (and initial values):
–  + (0)
–  - (0)
–  * (1)
–  & (~0)
–  | (0)
–  ^ (0)
–  && (1)
–  || (0)

© 2008 Pittsburgh Supercomputing Center

Pitfall #3: Parallel overhead

•  Spawning and releasing threads results in
significant overhead.

© 2008 Pittsburgh Supercomputing Center

Pitfall #3: Parallel overhead

© 2008 Pittsburgh Supercomputing Center

Pitfall #3: Parallel Overhead

•  Spawning and releasing threads results in
significant overhead.

•  Therefore, you want to make your parallel
regions as large as possible
–  Parallelize over the largest loop that you can

(even though it will involve more work to declare
all of the private variables and eliminate
dependencies)

–  Coarse granularity is your friend!

© 2008 Pittsburgh Supercomputing Center

Separating “Parallel” and “For” directives to
reduce overhead
•  In the following example, threads are spawned only once, not

once per loop:
#pragma omp parallel {
 #pragma omp for
 for(i=0; i<maxi; i++)
 a[i] = b[i];
 #pragma omp for
 for(j=0; j<maxj; j++)
 c[j] = d[j];

}

!$omp parallel
!$omp do
do i=1,maxi

 a(i) = b(i)
enddo
!$omp end do !(optional)

!$omp do
do i=1,maxj

 c(j) = d(j)
enddo
!$omp end do !(optional)
!$omp end parallel !
(required)

© 2008 Pittsburgh Supercomputing Center

Use “nowait” to avoid barriers

•  At the end of every loop is an implied barrier.
•  Use “nowait” to remove the barrier at the end of the

first loop:
#pragma omp parallel {
 #pragma omp for nowait
 for(i=0; i<maxi; i++)
 a[i] = b[i];
 #pragma omp for
 for(j=0; j<maxj; j++)
 c[j] = d[j];

}

Barrier removed by “nowait” clause

© 2008 Pittsburgh Supercomputing Center

Use “nowait” to avoid barriers

In Fortran, “nowait” goes at end of loop:
!$omp parallel
!$omp do
do i=1,maxi
 a(i) = b(i)

enddo
!$omp end do nowait

!$omp do
do i=1,maxj
 c(j) = d(j)

enddo
!$omp end do
!$omp end parallel

Barrier removed by “nowait” clause

© 2008 Pittsburgh Supercomputing Center

Other useful directives to avoid
releasing and spawning threads
•  #pragma omp master

 !$omp master ... !$omp end master
–  Denotes codes within a parallel region to only be executed

by the master

•  #pragma omp single
–  Denotes code that will be performed only one thread
–  Useful for overlapping serial segments with parallel

computation.

•  #pragma omp barrier
–  Sets a global barrier within a parallel region

© 2008 Pittsburgh Supercomputing Center

Thread stack

•  Each thread has its own memory region
called the thread stack

•  This can grow to be quite large, so default
size may not be enough

•  This can be increased (e.g. to 16 MB):
csh:
limit stacksize 16000; setenv KMP_STACKSIZE 16000000
bash:
ulimit -s 16000; export KMP_STACKSIZE=16000000

© 2008 Pittsburgh Supercomputing Center

Useful OpenMP Functions

•  void omp_set_num_threads(int num_threads)
–  Sets the number of OpenMP threads (overrides

OMP_NUM_THREADS)
•  int omp_get_thread_num()

–  Returns the number of the current thread
•  int omp_get_num_threads()

–  Returns the total number of threads currently
participating in a parallel region

–  Returns “1” if executed in a serial region
•  For portability, surround these functions with
#ifdef _OPENMP

•  #include <omp.h>

© 2008 Pittsburgh Supercomputing Center

Optimization: Scheduling

•  OpenMP partitions workload into “chunks” for
distribution among threads

•  Default strategy is static:

0

1

2

7

6

3

4

5

Lo
op

 it
er

at
io

ns

Chunk 0

Chunk 1

Chunk 2

Chunk 3

Thread 0

Thread 1

Thread 2

Thread 3

© 2008 Pittsburgh Supercomputing Center

Optimization: Scheduling

•  This strategy has the least amount of overhead
•  However, if not all iterations take the same amount of

time, this simple strategy will lead to load imbalance.

0

1

2

7

6

3

4

5

Lo
op

 it
er

at
io

ns

Chunk 0

Chunk 1

Chunk 2

Chunk 3

Thread 0

Thread 1

Thread 2

Thread 3

© 2008 Pittsburgh Supercomputing Center

Optimization: Scheduling

•  OpenMP offers a variety of scheduling
strategies:
–  schedule(static,[chunksize])

•  Divides workload into equal-sized chunks
•  Default chunksize is Nwork/Nthreads

–  Setting chunksize to less than this will result in chunks
being assigned in an interleaved manner

•  Lowest overhead
•  Least optimal workload distribution

© 2008 Pittsburgh Supercomputing Center

Optimization: Scheduling

–  schedule(dynamic,[chunksize])
•  Dynamically assigned chunks to threads
•  Default chunksize is 1
•  Highest overhead
•  Optimal workload distribution

–  schedule(guided,[chunksize])
•  Starts with big chunks proportional to (number of

unassigned iterations)/(number of threads), then
makes them progressively smaller until chunksize is
reached

•  Attempts to seek a balance between overhead and
workload optimization

© 2008 Pittsburgh Supercomputing Center

Optimization: Scheduling

–  schedule(runtime)
•  Scheduling can be selected at runtime using

OMP_SCHEDULE
•  e.g. setenv OMP_SCHEDULE “guided, 100”

–  In practice, often use:
•  Default scheduling (static, large chunks)
•  Guided with default chunksize

–  Experiment with your code to determine optimal
strategy

© 2008 Pittsburgh Supercomputing Center

What we have learned

•  How to compile and run OpenMP progs
•  Private vs. shared variables
•  Critical sections and reductions for updating

scalar shared variables
•  Techniques for minimizing thread spawning/

exiting overhead
•  Different scheduling strategies

© 2008 Pittsburgh Supercomputing Center

Summary

•  OpenMP is often the easiest way to achieve
moderate parallelism on shared memory
machines

•  In practice, to achieve decent scaling, will
probably need to invest some amount of
effort in tuning your application.

•  More information available at:
–  https://computing.llnl.gov/tutorials/openMP/
–  http://www.openmp.org
–  Using OpenMP, MIT Press, 2008

