The Abdus Salam
International Centre for Theoretical Physics

1967-20

Advanced School in High Performance and GRID Computing

3 - 14 November 2008

Error Messages and Debugging

KOHLMEYER Axel

University of Pennsylvania
Department of Chemistry
231 South 34th Street
PA 19104 Philadelphia
US.A.

Strada Costiera | |, 34014 Trieste, ltaly - Tel. +39 040 2240 || |; Fax +39 040 224 163 - sci_info@ictp.it, www.ictp.it

Debugging

ICTP Advanced School in High Performance
and GRID Computing

Axel Kohlmeyer
Center for Molecular Modeling
ICTP, Trieste — Italy, 07 November 2008

#il! iy
P_- e

L
the ghdus salam

international centre for theoretical physics @ Pen_n

What is Debugging?

ldentifying the cause of an error and correcting It

Once you have identified defects, you need to:
- find and understand the cause
- remove the defect from your code

Statistics show 60% of bug 'fixes' are not correct,
-> remove the symptom, but not the cause
Improve productivity by getting it right the first time
A lot of programmers don't know how to debug!
Debugging needs practice and experience:

-> understand the science and the tools

I Debugging (2)

- Doesn't add functionality

 Debugging Is a last resort:
I - Doesn't improve the science

* The best debugging is to avoid bugs:
- Good program design
- Follow good programming practices
- Always consider maintainability and readability of
code over getting results fast
- Maximize modularity and code re-use

I Errors are Opportunities

- Errors mean you didn't understand the program,
If you knew it perfectly, it wouldn't have an error.
You would have fixed it already

* Learn about the kind of mistakes you make:
- If you wrote the program, you inserted the error

- Once you find a mistake, ask youself:
* Why did you make it?
* How could you have found it more quickly?
 How could you have prevented it?
» Are there other similar mistakes in the code?
-> Better to correct them now!

I * Learn from the program you're working on:

How to NOT do Debugging

Find the error by guessing

Change things randomly until it works again
Don't keep track of what you changed

Don't backup the original

f the error Is suddenly gone, trying to
understand the problem, is a waste of time
Fix the error with the most obvious fix

If wrong code gives the correct result, and
changing it doesn't work, don't correct it.

I Debugging Tools

* Source code comparison tools:

I diff, vimdiff, tkdiff, emacs/ediff
- Help you to find changes

* Source analysis tools:

compiler warnings, ftnchek, lint

- Help you to find problematic code
-> Always enable warnings when programming

-> Always take warnings serious
-> Always compile/test on multip
-> Only ignore warnings you und

y
e platforms

erstand, If at all

* Debuggers: gdb, dbx, idb, pdbg, ddd (GUI)

Purpose of a Debugger

Better than print statements

Allows to stop/start/single step execution
Look at data and modify it

'Post mortem' analysis from core dumps
Prove / disprove hypotheses

Easier to use with modular code

No substitute for good thinking

But, sometimes good thinking Is not

a substitute for a good debugger!

I Using a Debugger

debug info in object (.0) and executable
* 1:1 mapping of execution and source code
only with disabled optimization
-> problem when optimization uncovers bug
* GNU compilers allow -g with optimization
-> not always correct line numbers
-> variables/code can be 'optimized away'
* strip command removes debug info

I * When compiling use -g option to include

I How to Report a Bug

* Research whether bug is known/fixed
I -> web search, mailing list archive

* Provide description on how to reproduce the
problem. Find a minimal input to show bug.

* Always state hardware/software you are
using (distribution, compilers, appl. version)

 Demonstrate, that you have invested effort

 Make it easy for others to help you!

