
The Abdus Salam
International Centre for Theoretical Physics

1967-20

Advanced School in High Performance and GRID Computing

3-14 November 2008

Error Messages and Debugging

KOHLMEYERAxel

University of Pennsylvania
Department of Chemistry

231 South 34th Street
PA 19104 Philadelphia

U.S.A.

Strada Costiera I 1, 34014 Trieste, Italy - Tel. +39 040 2240 11 I; Fax +39 040 224 163 - sci_info@ictp.it, www.ictp.it



Debugging

ICTP Advanced School in High Performance
and GRID Computing

Axel Kohlmeyer
Center for Molecular Modeling

ICTP, Trieste - Italy, 07 November 2008
Vi •>-as^

t n e abdus salam
international centre for theoretical physics Perm

UNIVERSITY of PENNSYLVANIA



What is Debugging?

Identifying the cause of an error and correcting it
Once you have identified defects, you need to:
- find and understand the cause
- remove the defect from your code

Statistics show 60% of bug "fixes' are not correct,
-> remove the symptom, but not the cause
Improve productivity by getting it right the first time
A lot of programmers don't know how to debug!
Debugging needs practice and experience:
-> understand the science and the tools



Debugging (2)

Debugging is a last resort:
- Doesn't add functionality
- Doesn't improve the science

The best debugging is to avoid bugs:
- Good program design
- Follow good programming practices
- Always consider maintainability and readability of

code over getting results fast
- Maximize modularity and code re-use



Errors are Opportunities

Learn from the program you're working on:
- Errors mean you didn't understand the program,

If you knew it perfectly, it wouldn't have an error.
You would have fixed it already

Learn about the kind of mistakes you make:
- If you wrote the program, you inserted the error
- Once you find a mistake, ask youself:

• Why did you make it?
• How could you have found it more quickly?
• How could you have prevented it?
• Are there other similar mistakes in the code?

-> Better to correct them now!



How to NOT do Debugging

Find the error by guessing
Change things randomly until it works again
Don't keep track of what you changed
Don't backup the original
If the error is suddenly gone, trying to
understand the problem, is a waste of time
Fix the error with the most obvious fix
If wrong code gives the correct result, and
changing it doesn't work, don't correct it.



Debugging Tools

Source code comparison tools:
diff, vimdiff, tkdiff, emacs/ediff
- Help you to find changes

Source analysis tools:
compiler warnings, ftnchek, lint
- Help you to find problematic code

-> Always enable warnings when programming
-> Always take warnings seriously
-> Always compile/test on multiple platforms
-> Only ignore warnings you understand, if at all

Debuggers: gdb, dbx, idb, pdbg, ddd (GUI)



Purpose of a Debugger

Better than print statements
Allows to stop/start/single step execution
Look at data and modify it
'Post mortem' analysis from core dumps
Prove / disprove hypotheses
Easier to use with modular code
No substitute for good thinking
But, sometimes good thinking is not
a substitute for a good debugger!



Using a Debugger

When compiling use -g option to include
debug info in object (.o) and executable
1:1 mapping of execution and source code
only with disabled optimization
-> problem when optimization uncovers bug
GNU compilers allow -g with optimization
-> not always correct line numbers
-> variables/code can be "optimized away1

s t r i p command removes debug info



How to Report a Bug

Research whether bug is known/fixed
-> web search, mailing list archive
Provide description on how to reproduce the
problem. Find a minimal input to show bug.
Always state hardware/software you are
using (distribution, compilers, appl. version)
Demonstrate, that you have invested effort
Make it easy for others to help you!


