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Hardware Acceleration

� Use of hardware to perform some function 
faster than is possible in software running on 
the general purpose CPU



  

GPU

� GPU – Graphics Processing Unit
� Demand for higher quality real-time graphics 

with affordable hardware
� Designed specifically for accelerating graphics 

processing
� GPU has become highly parallel with high 

memory bandwidth
GeForce GTX 280 has a 240 core GPU with 141 GB/sec of GPU 

memory bandwidth
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GPU

� GPU's workload is highly parallel floating point 
operations

� Programmability has been added to the 
processing pipelines of modern GPUs

� The floating point pipelines can be used to 
perform non-graphics related floating point 
operations.



  

GPU vs. CPU

How does the GPU achieve such high 
performance figures?

� CPU approach
� Designed to maximize serial performance
� Achieves this using several methods
� Code doesn't need to be modified to take 

advantage of better chip design (except multicore)



  

GPU vs. CPU

� GPU approach
� Prefers to exploit parallelism over serial 

performance
� Do away with the circuitry needed for serial 

performance (data caching, branch prediction...) 
� Devote more die space for “ALUs” (cores)
� Programs need to be written specifically to take 

advantage of the hardware
� CUDA (Compute Unified Device Architecture) is the 

programming model developed by NVIDIA for 
programming their GPUs



  



  

Data parallelism

� Perform the same operation on several data 
elements in parallel

� Example: find the sum of corresponding 
elements of two arrays
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Data parallelism in the GPU

� Each pair of data elements 
in processed separately by 
a processing unit called a  
Scalar Processor (SP)

� SPs are grouped into 
SIMD units called 
Streaming Multiprocessors 
(SM)

� SIMD: All the SPs within 
an SM execute the same 
instruction/program in lock 
step but operate on 
different data



  

Cooperation

� Threads operate on different elements of the 
data but we also need communication

� CUDA allows groups of threads to cooperate 
through shared memory

� Threads within a block can be barrier 
synchronized



  

Programming Model

� CUDA is an extension of C
� Functions that execute on the GPU (device 

from here onwards) are called kernels
� Each running copy of the kernel is called a 

thread
� Each thread is assigned a unique thread ID so 

that it may identify itself
� ��������	
variable



  

Thread hierarchy

� Threads are grouped into blocks
� Blocks can be 1D,2D or 3D
� ��������	
	���������	
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� Thread blocks grouped into 1D or 2D grid
� �������	
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Thread hierarchy

� Threads can access data based on thread ID
� Example:

� To index into a one dimensional array using the 
threadID

� Within the kernel we can use
� ������
������	�	
�

��������	
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� Since each thread has a unique thread ID, each 
operates on a unique element in the array

� Extend this idea to 2D and 3D so that we can 
logically map threads to elements of matrix data



  



  

� Executing a kernel launches a 
grid of blocks  on the GPU

� One or more blocks execute on 
an SM

� SM splits blocks into warps (32 
threads) and schedules them on 
SPs

� Threads within a block can 
access a common shared 
memory (fast)

� All threads have access to 
global/device memory (slow)

� Executing a kernel launches a 
grid of blocks  on the GPU

� One or more blocks execute on 
an SM

� SM splits blocks into warps (32 
threads) and schedules them on 
SPs

� Threads within a block can 
access a common shared 
memory (fast)

� All threads have access to 
global/device memory (slow)



  

Program structure

� Sequential program on host
� Allocate memory on device
� Copy data to device
� Launch kernel (executes several threads on 

device. Preferably thousands to occupy the 
hardware completely)

� Copy results from device
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Does it perform well?

� No. 
� To full utilize the hardware we need

� High arithmetic intensity ie. Number of calculations 
per device memory access

� Large number of threads/blocks
� Device memory accesses have 200 clock cycle 

latency (very slow)



  

Shared memory

� Shared memory is fast (~2 clock cycles)
� 16KB per SM (16KB available to a thread block)
� Helps us to utilize data reuse for performance 

by reducing trips to global memory
� We structure computations so that they are 

performed block-wise



  

Shared memory

� In an n-body simulation forces are calculated 
for each body interacting with every other (n-1) 
bodies

� We represent each body as an element of an n 
element array
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Basic performance tips

� High arithmetic intensity
� Large number of threads
� Each thread loads data from device memory to 

shared memory
� Process data in shared memory
� Use more blocks
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