
1967-22

Advanced School in High Performance and GRID Computing

BASHEER Ershaad Ahamed

3 - 14 November 2008

Jawaharlal Nehru Centre for Advanced Scientific Research
Centre for Computational Materials Science

Jakkur P.O., Bangalore 560064
Karnataka

INDIA

Introduction to GPU programming in the nvidia CUDA environment

Hardware Acceleration

� Use of hardware to perform some function
faster than is possible in software running on
the general purpose CPU

GPU

� GPU – Graphics Processing Unit
� Demand for higher quality real-time graphics

with affordable hardware
� Designed specifically for accelerating graphics

processing
� GPU has become highly parallel with high

memory bandwidth
GeForce GTX 280 has a 240 core GPU with 141 GB/sec of GPU

memory bandwidth

GPU

GPU

� GPU's workload is highly parallel floating point
operations

� Programmability has been added to the
processing pipelines of modern GPUs

� The floating point pipelines can be used to
perform non-graphics related floating point
operations.

GPU vs. CPU

How does the GPU achieve such high
performance figures?

� CPU approach
� Designed to maximize serial performance
� Achieves this using several methods
� Code doesn't need to be modified to take

advantage of better chip design (except multicore)

GPU vs. CPU

� GPU approach
� Prefers to exploit parallelism over serial

performance
� Do away with the circuitry needed for serial

performance (data caching, branch prediction...)
� Devote more die space for “ALUs” (cores)
� Programs need to be written specifically to take

advantage of the hardware
� CUDA (Compute Unified Device Architecture) is the

programming model developed by NVIDIA for
programming their GPUs

Data parallelism

� Perform the same operation on several data
elements in parallel

� Example: find the sum of corresponding
elements of two arrays

 14
13

12
11

10
9

8
7

6
5

4
3

2
1

0

14
13

12
11

10
9

8
7

6
5

4
3

2
1

0

A B

+
 +

+

 +

+
 +

+

 +
 +

 +
 +

 +
 +

 +
 +

14
13

12
11

10
9

8
7

6
5

4
3

2
1

0

C

Data parallelism in the GPU

� Each pair of data elements
in processed separately by
a processing unit called a
Scalar Processor (SP)

� SPs are grouped into
SIMD units called
Streaming Multiprocessors
(SM)

� SIMD: All the SPs within
an SM execute the same
instruction/program in lock
step but operate on
different data

Cooperation

� Threads operate on different elements of the
data but we also need communication

� CUDA allows groups of threads to cooperate
through shared memory

� Threads within a block can be barrier
synchronized

Programming Model

� CUDA is an extension of C
� Functions that execute on the GPU (device

from here onwards) are called kernels
� Each running copy of the kernel is called a

thread
� Each thread is assigned a unique thread ID so

that it may identify itself
� ��������	
variable

Thread hierarchy

� Threads are grouped into blocks
� Blocks can be 1D,2D or 3D
� ��������	
	���������	
����������	

� Thread blocks grouped into 1D or 2D grid
� �������	
	��������	
�

Thread hierarchy

� Threads can access data based on thread ID
� Example:

� To index into a one dimensional array using the
threadID

� Within the kernel we can use
� ������
������	�	
�

��������	
�
��������	�	�

� Since each thread has a unique thread ID, each
operates on a unique element in the array

� Extend this idea to 2D and 3D so that we can
logically map threads to elements of matrix data

� Executing a kernel launches a
grid of blocks on the GPU

� One or more blocks execute on
an SM

� SM splits blocks into warps (32
threads) and schedules them on
SPs

� Threads within a block can
access a common shared
memory (fast)

� All threads have access to
global/device memory (slow)

� Executing a kernel launches a
grid of blocks on the GPU

� One or more blocks execute on
an SM

� SM splits blocks into warps (32
threads) and schedules them on
SPs

� Threads within a block can
access a common shared
memory (fast)

� All threads have access to
global/device memory (slow)

Program structure

� Sequential program on host
� Allocate memory on device
� Copy data to device
� Launch kernel (executes several threads on

device. Preferably thousands to occupy the
hardware completely)

� Copy results from device

��������������	
����
�	����	
���

��������������� ��!�"��!#$%

����������������

�����������������������������

���������������� ���� �����!����������"#����

���������������� ���� �����!����������"#����

�������������$��%&�������������"#��������$��%&' (�#)$���$��

�������������$��%&�������������"#��������$��%&' (�#)$���$��

�����������*��
	$��(����+� �,�-./���+� �,(�/��

������������000+� �,(��
	$��(����+� �,111����������

������������#
	$���&��
	 ��2$���

�&���������
�����'�&��(��)�*������ $%

�+
 �����,'�&��-&���**$
.

+/��0�+ *�����"12��0��
�	��&���0
+�����
3

4*501"�&��(�������-���0! �����$$%

���&�0
6%

7

�����$��%&�������������"#��������$��%&)$���$# ' (���

/��0�+
 1-&���**1$%

	$��	��3�

4

��
� +������ ������������������������

�������������&5�
	$����6768+� �,��676��� �,)��76�

�����������&�5���&�8���&��

4

Does it perform well?

� No.
� To full utilize the hardware we need

� High arithmetic intensity ie. Number of calculations
per device memory access

� Large number of threads/blocks
� Device memory accesses have 200 clock cycle

latency (very slow)

Shared memory

� Shared memory is fast (~2 clock cycles)
� 16KB per SM (16KB available to a thread block)
� Helps us to utilize data reuse for performance

by reducing trips to global memory
� We structure computations so that they are

performed block-wise

Shared memory

� In an n-body simulation forces are calculated
for each body interacting with every other (n-1)
bodies

� We represent each body as an element of an n
element array

0 1 2 3 4 5 6 7 8

n - 1
0 1 2 3 4 5 6 7 8

f
00

 f
01

 f
02

 f
03

 f
04

f
10

 f
11

 f
12

 f
13

 f
14

n2 Threads

...

n - 1

0 1 2 3 4 5 6 7 8 n - 1

0 1 2 3 4 5 6 7 8

f
00

 f
01

 f
02

 f
03

 f
04

f
10

 f
11

 f
12

 f
13

 f
14

Thread 0

Thread 1

n Threads

�Each thread loads one body
into shared memory
�All n threads have to be in
the same block so that they
can utilize shared memory

...

n - 1 Thread n-1

0 1 2 3 4 5 6 7 8

n - 1
0 1 2 3 4 5 6 7 8

n Threads

f
00

 f
01

 f
02

 f
03

 f
04

f
10

 f
11

 f
12

 f
13

 f
14

Tile 0 Tile 1

�All threads within a tile are in
one thread block
�Each thread within a tile loads
one body into shared memory
�Each thread loads the next
set of bodies when it crosses
the border to the next tile

Thread 0

Thread 1

Thread 3

Thread 2

...

n - 1

Basic performance tips

� High arithmetic intensity
� Large number of threads
� Each thread loads data from device memory to

shared memory
� Process data in shared memory
� Use more blocks

References

� http://www.nvidia.com/cuda
� CUDA classes at University of Illinois video

download on NVIDIA CUDA website
� Taught by Professor Wen-mei W. Hwu and David

Kirk, NVIDIA Chief Scientist.

� http://www.gpgpu.org

