

1967-22

Advanced School in High Performance and GRID Computing

3 - 14 November 2008

Introduction to GPU programming in the nvidia CUDA environment

BASHEER Ershaad Ahamed

Jawaharlal Nehru Centre for Advanced Scientific Research Centre for Computational Materials Science Jakkur P.O., Bangalore 560064 Karnataka INDIA

Introduction to GPU programming in the NVIDIA CUDA environment

Ershaad Ahamed Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India

ershaad@jncasr.ac.in

Hardware Acceleration

 Use of hardware to perform some function faster than is possible in software running on the general purpose CPU

GPU

- GPU Graphics Processing Unit
- Demand for higher quality real-time graphics with affordable hardware
- Designed specifically for accelerating graphics processing
- GPU has become highly parallel with high memory bandwidth

GeForce GTX 280 has a 240 core GPU with 141 GB/sec of GPU memory bandwidth

source: NVIDIA

GPU

- GPU's workload is highly parallel floating point operations
- Programmability has been added to the processing pipelines of modern GPUs
- The floating point pipelines can be used to perform non-graphics related floating point operations.

GPU vs. CPU

How does the GPU achieve such high performance figures?

- CPU approach
 - Designed to maximize serial performance
 - Achieves this using several methods
 - Code doesn't need to be modified to take advantage of better chip design (except multicore)

GPU vs. CPU

- GPU approach
 - Prefers to exploit parallelism over serial performance
 - Do away with the circuitry needed for serial performance (data caching, branch prediction...)
 - Devote more die space for "ALUs" (cores)
 - Programs need to be written specifically to take advantage of the hardware
 - CUDA (Compute Unified Device Architecture) is the programming model developed by NVIDIA for programming their GPUs

source: NVIDIA

Data parallelism

- Perform the same operation on several data elements in parallel
- Example: find the sum of corresponding elements of two arrays

Data parallelism in the GPU

- Each pair of data elements in processed separately by a processing unit called a Scalar Processor (SP)
- SPs are grouped into SIMD units called Streaming Multiprocessors (SM)
- SIMD: All the SPs within an SM execute the same instruction/program in lock step but operate on different data

Cooperation

- Threads operate on different elements of the data but we also need communication
- CUDA allows groups of threads to cooperate through shared memory
- Threads within a block can be barrier synchronized

Programming Model

- CUDA is an extension of C
- Functions that execute on the GPU (device from here onwards) are called kernels
- Each running copy of the kernel is called a thread
- Each thread is assigned a unique thread ID so that it may identify itself
- threadIdx variable

Thread hierarchy

- Threads are grouped into blocks
- Blocks can be 1D,2D or 3D
- threadIdx.x threadIdx.y threadIdx.z
- Thread blocks grouped into 1D or 2D grid
- blockIdx.x blockIdx.y

Thread hierarchy

- Threads can access data based on thread ID
- Example:
 - To index into a one dimensional array using the threadID
 - Within the kernel we can use
 - array[blockIdx.x * blockDim.x + threadIdx.x]
 - Since each thread has a unique thread ID, each operates on a unique element in the array
 - Extend this idea to 2D and 3D so that we can logically map threads to elements of matrix data

- Executing a kernel launches a grid of blocks on the GPU
- One or more blocks execute on an SM
- SM splits blocks into warps (32 threads) and schedules them on SPs
- Threads within a block can access a common shared memory (fast)
- All threads have access to global/device memory (slow)

Program structure

- Sequential program on host
- Allocate memory on device
- Copy data to device
- Launch kernel (executes several threads on device. Preferably thousands to occupy the hardware completely)
- Copy results from device

```
int main(int argc, char** argv) {
        CUT DEVICE INIT (argc, argv);
        int* d A, * d B;
        int A[SIZE], B[SIZE];
        cudaMalloc((void**)&d_A, SIZE_BYTES);
        cudaMalloc((void**)&d B,SIZE BYTES);
        cudaMemcpy(d A, A, SIZE BYTES, cudaMemcpyHostToDevice);
        cudaMemcpy(d_B,B,SIZE_BYTES,cudaMemcpyHostToDevice);
        dim3 threads_in_block(512), blocks(2);
        mult << <blocks, threads in block>>> (d A, d B);
        cudaThreadSynchronize();
        cudaError t error=cudaGetLastError();
        if (error!=cudaSuccess) {
             fprintf(stderr, "Kernel execution failed:
                  %s\n", cudaGetErrorString(error));
                return 1;
        cudaMemcpy(B, d B, SIZE BYTES, cudaMemcpyDeviceToHost);
        printf ("Success");
        return 0;
```

```
__global__ void mult(int* A, int* B) {
    int my=threadIdx.x+blockIdx.x*BlockDim.x;
    A[my]=A[my]+B[my];
}
```

Does it perform well?

- No.
- To full utilize the hardware we need
 - High arithmetic intensity ie. Number of calculations per device memory access
 - Large number of threads/blocks
 - Device memory accesses have 200 clock cycle latency (very slow)

Shared memory

- Shared memory is fast (~2 clock cycles)
- 16KB per SM (16KB available to a thread block)
- Helps us to utilize data reuse for performance by reducing trips to global memory
- We structure computations so that they are performed block-wise

Shared memory

- In an n-body simulation forces are calculated for each body interacting with every other (n-1) bodies
- We represent each body as an element of an n element array

n - 1

Basic performance tips

- High arithmetic intensity
- Large number of threads
- Each thread loads data from device memory to shared memory
- Process data in shared memory
- Use more blocks

References

- http://www.nvidia.com/cuda
- CUDA classes at University of Illinois video download on NVIDIA CUDA website
 - Taught by Professor Wen-mei W. Hwu and David Kirk, NVIDIA Chief Scientist.
- http://www.gpgpu.org