

1967-25

Advanced School in High Performance and GRID Computing

3 - 14 November 2008

High Bandwidth Data Transfer

BARRIOS HERNANDEZ Carlos Jaime Laboratoire Informatique de Grenoble LIG Montbonnot Sain Martin, 38330 Grenoble FRANCE

High Bandwidth Data Transfer in Grids

Carlos Jaime BARRIOS-HERNÁNDEZ

Laboratoire de Informatique de Grenoble INRIA Equipe Mescal Montbonnot-St Martin Université de Nice à Sophia Antipolis Laboratoire de Informatique, Signaux et Systèmes de Sophia Antipolis Equipe Rainbow Sophia-Antipolis

> Advanced School in High Performance and GRID Computing ICTP -Trieste, Italy, November 2008

Information Shared

Information Transfer

- Data has different formats (and sizes)
- Data is transferred upon heterogeneous channels
 - Protocols
 - Physical links, devices, networks technologies
- Data are stored of different ways
 - File systems
- Data is treated (access process) in concurrency
 - Synchronous and asynchronous ways
- Data Production and Consumption grows.
- Data transfer (storage and process) is not safe.

The Critical Point

• In Grid, frequently, the time to transfer data volumes is more important that the time to process or compute data.

Outline

• High Bandwidth Data Transfer ... in Grid

- Massive / Intensive Data Transfer
- Concurrency
- Synchronization
- Storage
- Modeling
- Summary

Grid Layers

High Bandwidth Data Transfer... in Grids

- Data changes of environment
 - Local Platform Transfer (IntraCluster)
 - External Transfer (ExtraCluster)
- Data is massive / intensive
- Data are in concurrence

Data Treatment Perspective

- Intrastructure Point of View
 - Technological advantages to treat data volumes (devices, physical connexions)
 - Protocols
 - GridFTP, GXFER, TCP
 - File Systems
 - NFSp, PFS, dNFSp, Lustre, XtreemFS

- Application Point of View
 - Commicator Algortihms
 - Collective communicators implementations in MPI
 - Communicator Distributed-Models Adaptation
 - LogP, PRAM, Postal

Data Treatment Perspective

- Intrastructure Point of View
- Technological advantages to treat data volumes (devices, physical connexions)
- Application Point of View
 - Commicator Algortihms
 - Collective

IT EXISTS A MUTUAL INFLUENCE!! MPI

- GridFTP, GXFER, TCP
- File Systems
 - NFSp, PFS, dNFSp, Lustre, XtreemFS

- Communicator Distributed-Models Adaptation
 - LogP, PRAM, Postal

High Bandwidth Data Transfer

Bandwidth

- Capacity for a given system to transfer data over a connection (wikipedia).
- Normally is **confused** with **throughput**
 - Average rate of successful message delivery over a communication channel (wikipedia)

• Latency

- Time to send a message of m bytes between emisor to receptor.
- Normally is confused with Time Transmission
 - Total time to transfer a message of m bytes among a network.

Interpeting Latency and Bandwidth

From W.Groop Modeling Performance Course

- Simplest model s + r n
 s includes both hardware (gate delays) and software (context switch, setup)
- *r* includes both hardware (raw bandwidth of interconnection and memory system) and software (packetization, copies between user and system)
- head-to-head and pingpong values may differ

Interpreting Latency and Bandwidth

From W.Groop Modeling Performance Course

 Bandwidth is the inverse of the slope of the line time = latency + (1/rate) size_of_message

• Latency is sometimes described as "time to send a message of zero bytes". This is true *only* for the simple model. The number quoted is sometimes misleading.

Intepreting Latency and Bandwidth

- Bandwidth :
 - Capacity ; Availability
- Latency:
 - Use

Time Transmission:

 Time to Send + Time to Receive + Latency + (Network or Applications Delays) (Minimalistic conception)

Massive and Intensive Data Transfer (1/3)

MESSAGE MESSAGE

Message < Underlying Window protocol

Transfer

 In a transfer, normally, the message is not very great that the underlying transmission capacity of the communication protocol (i.e. tcp window)

Massive and Intensive Data Transfer (2/3)

Message < Underlying Window protocol

• A very great size message (or long) is cut in "packets" to be transferred among the link.

Massive and Intensive Data Transfer (3/3)

- Massive Data Transfer occurs when a great message (m) is transferred.
- As m is cut in packets, there are a consecutive transfer of kpackets of m, then a massive data transfer can be described in terms of massive data transfer.
- There are additional costs related with massive/intensive data transfer:
 - Gap, overheads, contention, delays due to saturation.
- However, Grid Infrastructure guarantees high bandwidth transmission (in general)

Concurrence

- Programs may be generate collective communications
- In Grid Platforms, never we alone.
- Transfer may be asynchronous or synchronous.
 - For example, when you use mpi barriers.
- « Users » can be to need the sames data sets or data volumes.

Storage

- Data access among high bandwidth networks
- It exist solutions with distributed storage systems
 - Expensives (in technical terms)
 - New Protocols, new File Systems
 - PVFS, NFSp, dNFSp

Modeling (Example)

Example of use of the model to Performance Evaluation GDX-Grillon Calculated and Measured Latency

From Barrios and Denneulin EXPEGRID HPDC 2006

Summary

- In Grid , Data transfer is not only an infrastructure or technology problem.
- In Grid, Data Storage is a technology problem.
- Knowledge grows, information grows, data transfer grows, data storage grows... and the efficiency in data/storage?

The problem is not to know too much... it's not to know what make with the information.

Thanks, merci, gracias, grazie

Next Year

- Latin American Conference on High Performance Computing (CLCAR 2009)
 - Choroni, Venezuela, 13-19 September 2009
 - Call for papers open in december 2008 to May 2009
 - For more information:
 - cjbarrioshernandez@ieee.org
 - nunez@ula.ve

