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Teleconnections in the NAtl
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Kushnir and Wallace (1989)
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Outline

Anti�phase relationship between North African and 
Levant hydroclimate � orchestrated by Atlantic 
Multidecadal SST Variability �AMV�

AMV & North American Droughts

The mechanisms

AMV and “Global Warming”
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DS Level and Settlements
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Migowski et al (2006)
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DS Level and Settlements
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Migowski et al (2006)
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Holocene Sahel-Levant 
Connection
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Levant Precipitation 
& N. Atlantic SST
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Jerusalem hydrological 
year precipitation
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Intercontinental links to 
Jerusalem ppt

7
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correlation

Annual (Oct-Sep) Jerusalem precipitation correlated with precipitation elsewhere. 
Time series were smoothed by 1 pass of a 2-nd order binomial filter. 

Precipitation from GPCC 1930-1995.
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North American Droughts

8

First PC of annual Palmer Drought Severity Index (PDSI) for the years 1857 to 2004 (black 
solid line), tropical North Atlantic (tNAtl) SST (0-30°N, red line), and Nino3.4 (green line). All 
time series are derived from annual mean data, linearly detrended in time & low pass filtered 

to emphasize fluctuations with periods longer than a decade. 

Fi PC f l P l D h S i I d (PDSI) f h 1i f l l h i d f h

Enfield et al. �2001�, McCabe et al. �2004�, Schubert et al. �2004�, and 
Sutton and Hodson �2005, 2007�, already drew attention to the role 

of the Atlantic in N. American hydroclimate.

8



North American Droughts

8

First PC of annual Palmer Drought Severity Index (PDSI) for the years 1857 to 2004 (black 
solid line), tropical North Atlantic (tNAtl) SST (0-30°N, red line), and Nino3.4 (green line). All 
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First PC of annual Palmer Drought Severity Index (PDSI) for the years 1857 to 2004 (black 
solid line), tropical North Atlantic (tNAtl) SST (0-30°N, red line), and Nino3.4 (green line). All 
time series are derived from annual mean data, linearly detrended in time & low pass filtered 

to emphasize fluctuations with periods longer than a decade. 
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• The correlation of PC1 & the 
time series of tNTal SST is -0.34 
(significant at the 5% level). 

• With Niño3.4 the corr. is 0.38. 

• A time series reconstructed 
from a multiple regression of 
PC1 on both the Niño3.4 and 
tNTal SST correlates with PC1 
series at a level of 0.69. 

• The correlation between the 
two low-pass filtered SST 
indices in only 0.15.

Enfield et al. �2001�, McCabe et al. �2004�, Schubert et al. �2004�, and 
Sutton and Hodson �2005, 2007�, already drew attention to the role 

of the Atlantic in N. American hydroclimate.
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Trop. Atl. Teleconnections
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TAGA exp: 16 member 
ensemble with 30°S�30°N 
Atl. SST prescribed from 
obs. 1970�2005�

Figure: Ensemble mea�
SLP & PPT, regressed o�
trop. No. Atl. SST

Drying over US Southwest 
when trop. No. Atl. is warm

 Low pressure over No. Atl. 
in both seasons. High 
pressure over No. Pac. in 
winter.
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TAGA Diabatic Heatinbg
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Total column heating 
in K/s derived from 
TAGA AGCM 
integrations

Center of heating is the 
Caribbean.

There is broad cooling 
over the Pacific, 
especially in winter.
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Linear AGCM forced w. 
TAGA heating: summer

tAtl. Only

Linear GCM response 
to summer heating

Full GCM regression 
on tNAtl SST

~850 hPa

~150 hPa
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11

Linear AGCM forced w. 
TAGA heating: summer

tAtl. Only

Linear GCM response 
to summer heating

entire tropics

Full GCM regression 
on tNAtl SST

~850 hPa

~150 hPa
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 Winter response 
to tropical heating
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Full GCM regression 
on tNAtl SST

Linear GCM response 
to tropical heating

Linear GCM response 
to tNAtl heating

e 

Linear GCM response 
to Pacific heating
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Spreading of  tNAtl heating
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The change in the vertical  
temperature distribution 
10°S�10°N, in a 100�
member ensemble of a 
100�day integration with a 
fixed, realistic tNAtl 
SSTA. Shown is average 
for days 31�50.

1 Dec start

1 Jun start
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Evidence from Observations
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Evidence from Observations
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Weaker SLP anom consistent with weaker response in convection  
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East Atlantic - Levant 
Teleconnections
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The SLP difference between wet and dry years points at a seesaw 

between the Eastern Atlantic and the Eastern Mediterranean.

Ziv et al. (2006)
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between the Eastern Atlantic and the Eastern Mediterranean.
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B&L EU2
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The SLP difference between wet and dry years points at a seesaw 

between the Eastern Atlantic and the Eastern Mediterranean.
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Summary

The relatively weak forcing of the AMV can modulate 
multidecadal variability on five continents �recall links 
to the Indian monsoon or NE Brazil wet season�

The mechanism of spreading the influence appears to 
be the well�known set of NH atmospheric 
teleconnection patterns

The critical region in the ocean is the tNAtl

For the near future AMV has to be accounted for in 
Global Warming projections
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Ratio of  Variance

Forced/Total variability in IPCC AR4 models �CMIP5 runs�. 
Results are based on 6 model ensemble with # members � 4.

Ting et al (in press)
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AMV and Global Warming
1. Annual SST anom. averaged 

over the N. Atl. in 
observations �solid black�
and 6 CGCMs ensembles. 
Dashed line is the multi�
model average.

2. Solid line is the same as 
above. Colored lines are the 
projections of N. Atl. SST 
on each model’s S/N 
maximizing PCs of global 
surface air temperatures 
�the externally forced 
signal�.
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Ting et al (in press)
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Pattern of  AMV

1. Time series of annual mean 
SST averaged over the N. 
Atl. minus the externally 
forced signal estimated 
using S/N maximizing PC 
analysis �each color 
represents a di�erent model 
estimate of the forced 
signal�.

2. The projection of annual 
mean surface air 
temperature on the time 
series in �1�.  
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Ting et al (in press)
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�2�
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Pattern of  AMV

1. Time series of annual mean 
SST averaged over the N. 
Atl. minus the externally 
forced signal estimated 
using S/N maximizing PC 
analysis �each color 
represents a di�erent model 
estimate of the forced 
signal�.

2. The projection of annual 
mean surface air 
temperature on the time 
series in �1�.  
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Ting et al (in press)
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Colored areas are statistically 
significant at the 5% level
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