

1968-13

Conference on Teleconnections in the Atmosphere and Oceans

17 - 20 November 2008

Regime view of Teleconnection: Euro-Atlantic Winter Regimes in ECMWF Seasonal Forecasts

STRAUS David Martin

Center For Ocean Land Atmosphere Studies (COLA/GMU) Institute For Global Environment & Society (IGES) 4041 Powder Mill Road, Suite 302, 20705-3106 MD Calverton U.S.A.

MOLTENI Franco

European Centre For Medium-Range Weather Forecasts (ECMWF) Shinfield Park, Berkshire RG2 9AX Reading UNITED KINGDOM

Regime View of Teleconnection:

Euro-Atlantic Winter Regimes in ECMWF Seasonal Forecasts

David M. Straus* and Franco Molteni**

*Department of Atmospheric, Oceanic and Earth Sciences George Mason University

Center for Ocean-Land-Atmosphere Studies

****European Centre for Medium-Range Weather Forecasts**

Intra-Seasonal Atmospheric Variability: Teleconnections vis-à-vis Circulation Regimes

"Teleconnection ... refers to climate anomalies being related to each other at large distances (typically thousands of kilometers)."*

- Physical explanation in terms of propagation mechanisms

- Often diagnosed through "linear" analysis of anomalies

Circulation Regimes: Preferred organization of large-scale anomalies over a wide region.

> - Physical explanation: involves feedback between planetary and synoptic waves to produce "quasi-equilibrium" states

- Diagnosed through "non-linear" algorithms

*from Wikipedia

Phenomenological Motivation for Circulation Regimes

Existence of extended periods of one type of (possible extreme) weather has been recognized for many years (papers going back to the 1950s at least) - Examples: droughts, stormy periods, cold periods

These periods occur intermittently, and must be related to persistence in the "large-scale" flow

Example: European Heat Waves of summer 2003 - were they related to regimes in the summertime Euro-Atlantic region?

Regimes and Synoptic-Scale Feedback

Notion that weather regimes involve mutual feed-back between the (quasistationary) large scales waves and the smaller-scale baroclinic, synoptic disturbances was developed theoretically by Reinhold and Pierrehumbert (1982) and Vautard and Legras (1988).

The feedback from the baroclinic waves to the planetary waves can be parameterized:

Purely dynamically (RP)

Semi-empirically (VL)

Completely statistically (multiplicative noise: Sura, Newman, Penland and Sardeshmukh, 2004: J. Atmos. Sci., 62, 1391-1409)

Some Methodologies

- 1) Partitioning of PC-based state space to maximize in-cluster variance
- 2) Mixture model method: modeling entire *pdf* with a sum of Gaussian *pdfs*
- 3) Neural-Network related methods

-Each method has advantages and disadvantages -Synoptic scale feedback usually not accounted for

Significance Testing

- a) Significance vis-à-vis a single Gaussian pdf
- b) robustness to sampling errors (reproducibility)
- c) Significance easier to establish in large simulated datasets than in short observational record

Example of partitioning in PC state space: Maximize withincluster variance

Conference on Teleconnections in the Atmosphere and Oceans

7

Euro-Atlantic Winter Regimes in ECMWF Seasonal Forecasts

Explicit coupling between planetary and synoptic scale "envelope" is incorporated

Data:

- Model System 3: T159 AGCM coupled to HOPE 1-deg Ocean
- Historical Forecasts: Nov 1 starts for 25 years: 1981-2005
- Daily 200 hPa height analyzed: December-March
- 11 ensemble members for each forecast start date
- Observational comparison: ERA40 + continuation for same winters

Envelope Function: Tracks low-frequencey variations of synoptic scale activity

Computation of envelope at 20W 50N for DJFM 1982/83

Euro-Atlantic Winter Regimes in ECMWF Seasonal Forecasts

Analysis:

- Traditional low-pass (10-90 day) filter on Z 200 \Rightarrow ZLP
- Envelope function of band-pass (2-10 day) filtered data \Rightarrow ZENV
- Compute EOFs and PCs of ZLP
- Compute EOFs and PCs of ZENV
- Compute Singular Value Decomposition using leading N PCS of ZENV and ZLP
- SVD patterns very robust to changes in N from 6 to 20
- Leading 3 SVD modes capture ~ 87 90% of squared covariance (little dependence on N)
- Use SVD-defined coordinates keep only 3 modes:
- •Apply quasi-stationary filtering (following pioneering studies by Toth)
- •Apply partitioning algorithm

• Technical note: Algorithm is insensitive to orthogonal rotation defined by SVD, but the SVD analysis leads to a unique truncation (N) in state space

Presentation of cluster patterns

- Classify all quasi-stationary states into one of 4 clusters,
- Full-field composite anomalies of ZLP based on cluster assignment
- Full-field composite anomalies of the envelope function based on cluster assignment
- Examination of envelope function anomalies shows storm track shifts in association with low-pass height shifts

Atmosphere and Oceans

Atmosphere and Oceans

Reproducibility of the clusters

• Construct 121 winter *samples* from ensemble data set:

• Each *sample* consists of one forecast per winter for the 25 winters, and is strictly comparable to the ERA reanalysis

• For each sample:

• From the full set of PCs of ZLP and the envelope function, choose the subset corresponding to the given sample

- Compute the SVDs based on the subset of PCs
- Apply the quasi-stationary filtering and partitioning to the SVDs

• Match the corresponding clusters to the clusters of the full ensemble on the basis of error "energy" (squared amplitude); compute error energy and pattern correlation for each cluster

• Archive the 121 sets of cluster error energy and pattern correlation measures

• From this archive compute pdfs

• Note: The SVD defining each sample defines a unique rotation and truncation of the original PC state space

Conference on Teleconnections in the Atmosphere and Oceans

Reproducibility

- Scandinavian Trough most reproducible: generally highest pattern correlation and lowest error energy
- European Blocking least reproducible: lowest pattern correlation and highest error energy

Some Conclusions

ECMWF seasonal forecast model simulates European-Atlantic clusters which are very similar in pattern to those in reanalyses
The Scandinavian trough is the most reproducible across forecasts; European blocking is the least reproducible
Using SVD between low-pass height field and the envelope storm track fluctuations yields a unique truncation level (3 modes) for cluster calculations - removing one source of arbitrariness
Other amibiguities remain: Number of clusters?

Appendix: Some details about SVD calculations

Data source	N PCs	squared covariance	% sq cov explained in first 3 modes
EC forecasts	6	$1.1 \text{ x } 10^{11} \text{ m}^4$	37, 33, 20
EC forecasts	10	$1.2 \text{ x } 10^{11} \text{ m}^4$	35, 32, 20
EC forecasts	20	$1.2 \text{ x } 10^{11} \text{ m}^4$	35, 32, 20
ERA 40	6	8.6 x 10 ¹⁰ m ⁴	43, 30, 19