

1968-10

Conference on Teleconnections in the Atmosphere and Oceans

17 - 20 November 2008

Teleconnection patterns: an overview.

WALLACE John Michael University of Washington, Dept. of Atmospheric Sciences Box 354235 106 King Building WA 98195-4235 Seattle U.S.A.

Cross-frequency coupling, Skewness, and Blocking

Teleconnection Patterns: Why do they exist?

H Baroclinic waves <6 d</p>
L Low frequencies >6 d
Blackmon 1976

H Baroclinic waves <6 d M Barotropic Rossby waves 6-30 d

L Perturbations in stationary waves >30d

000 Hr Fcst 500 MB Heights (dekameters) valid 00Z Thu 01 Nov 2007 (initialized 00Z Thu 01 Nov 2007)

5-day Centered Mean 500 MB Heights (dekameters) valid 00Z 01 Sep 2007

Univ. of Washington Dept. of Atm. Sci.

Blackmon et al. (1984)

Blackmon et al. (1984)

Lau and Nath (1999)

 $Z' = Z_L + Z_M + Z_H$

Cross-frequency coupling

Feldstein (2000)

8-10 d decorrelation time of daily indices

90

The synoptic paradigm

The synoptic paradigm

The synoptic paradigm

Both polarities of the NAO originate from and are maintained by breaking synoptic-scale waves and that it is the remnants of these breaking waves that form the physical entity of the NAO. *Benedict et al.* (2004)

Woollings et al. (2008)

"A positive NAO is envisaged as being a description of periods in which these episodes are infrequent and can be considered as a basic, unblocked situation. A negative NAO is a description of periods in which episodes occur frequently."

BB+

BB-

L, M, H all exhibit their own distinctive patterns

L, M, H all exhibit their own distinctive patterns Teleconnection patterns are unique to L

L, M, H all exhibit their own distinctive patterns

Teleconnection patterns are unique to L

Variations in daily NAO and other indices is difficult to interpret

e folding time may underestimate longevity of teleconnection patterns

L, M, H all exhibit their own distinctive patterns

Teleconnection patterns are unique to L

Variations in daily NAO and other indices is difficult to interpret

e folding time may underestimate longevity of teleconnection patterns

L, M, H all exhibit their own distinctive patterns Teleconnection patterns are unique to L Variations in daily NAO and other indices is difficult to interpret e folding time may understimate memory of teleconnection patterns

 Z_{L} and Z_{H} are non-linearly related (Lau 1988, Wettstein 2008) Z_{L} and Z_{M} are also non-linearly related

L, M, H all exhibit their own distinctive patterns Teleconnection patterns are unique to L Variations in daily NAO and other indices is difficult to interpret e folding time may understimate memory of teleconnection patterns

ZL and ZH are non-linearly related (Lau 1988, Wettstein 2008) ZL and ZM are also non-linearly related

L, M, H all exhibit their own distinctive patterns Teleconnection patterns are unique to L Variations in daily NAO and other indices is difficult to interpret e folding time may understimate memory of teleconnection patterns

 Z_{\perp} and Z_{+} are non-linearly related (Lau 1988, Wettstein 2008) Z_{\perp} and Z_{+} are also non-linearly related Cross-frequency coupling implies skewness; L, M dominates

2

L, M, H all exhibit their own distinctive patterns Teleconnection patterns are unique to L Variations in daily NAO and other indices is difficult to interpret e folding time may understimate memory of teleconnection patterns

 Z_{\perp} and Z_{H} are non-linearly related (Lau 1988, Wettstein 2008) Z_{\perp} and Z_{M} are also non-linearly related Cross-frequency coupling implies skewness; L, M dominates Strong feedback of H upon L Feedback of M upon L might not be as strong; coupling might be one-way

Linear dynamics are important in M, even in high amplitude events A suitable "null hypothesis" for studies of non-linearity

Role of boundary forcing

Thank you