



1968-28

#### **Conference on Teleconnections in the Atmosphere and Oceans**

17 - 20 November 2008

Vertical propagation of teleconnections and the North Atlantic oscillation.

SCAIFE Adam Arthur UK Met Office Hadley Centre Fitzroy Road, Devon Exeter EX1 3PB UNITED KINGDOM



## Vertical teleconnections and North Atlantic Climate

Adam Scaife

**David Fereday and Sarah Ineson** 

November 2008

# 1) European response to ENSO

- Tropics to extratropics PNA
- Extratropics: troposphere -> stratosphere
- Wave mean flow interaction
- Descent of zonal winds
- Euro-Atlantic effects

## **Enhanced stationary waves**



Climatology (black)

El Nino anomaly (colours)

## Filling of the stratospheric cyclone

Model El Nino anomaly (50hPa geopotential height)



**Observations** (Hamilton, 1993)



ENSO events produce a -ve NAO response (e.g. Moron and Gouirand 2003, Bronniman et al. 2004) Clearly visible in 2/3 of observed El Nino events (Toniazzo and Scaife 2006) Stratospheric component appears in models (Hamilton, 1993, Manzini et al. 2006)

## **Downward progression**



Descending zonal mean wind signals, slower at lower altitudes

Consistent with wave-mean flow interaction from a steady wave source

Intraseasonal transition in NAO Agrees with observations

## Surface climate Response

**Arctic Oscillation** 

**Cold in Northern Europe** 

Warm in southern Europe

Useful for seasonal forecasting



Ineson and Scaife, in press, Nat. Geosci.

## 2) European climate change

Pre-industrial SST, Sea-Ice and  $CO_2$ or  $4xCO_2$  SST, Sea-Ice and  $CO_2$ 

## CTL L38 4xCO<sub>2</sub> L38

## CTL L60 4xCO<sub>2</sub> L60

**Standard Model** 

Resolution: L38 N96 Lid: ~40km **Extended Model** 

Resolution: L60 N96 Lid: ~85km



## **Preindustrial Winter Climate**

#### **Sea Level Pressure**



#### **Tropospheric** U wind



#### **Standard** Model





#### Extended Model



## Winter Climate Change: 1.5m Temperature (K)



#### **Standard Model**



#### **Extended Model**



## Winter Climate Change: Sea Level Pressure (hPa)

#### Met Office Standard Model

#### **IPCC AR4 Models**





#### **Extended Model**











4xCO<sub>2</sub> response



© Crown copyright Met Office



## Causes of increased tropospheric shear



## **Baroclinic Eddy Response**



• Very large increase in the Eady growth rate in the extended model

• Not present in the standard model

• Just S of the low pressure response in the extended model

=> Enhanced cyclones and low P in mid lats



 percentage change 

Eddy activity (2-6days)

Storm track changes (Huebener et al. 2007)





## **Rainfall Changes**

#### Mean Rainfall



#### Frequency of Heavy Rainfall



#### Standard Model





#### Extended -Standard



### **SUMMARY**

Vertical teleconnections play a key role in global variability

European response to ENSO is a clear example

Regional climate change may also be affected:

- Increased meridional circulation (Butchart and Scaife 2001)
- Upper level dipole response in U
- Changes in U<sub>z</sub> => increased growth of baroclinic eddies
- Circulation changes exacerbate climate change in W Europe
- more storms => larger increase in heavy rainfall events than in IPCC