

The Abdus Salam International Centre for Theoretical Physics

1968-23

Conference on Teleconnections in the Atmosphere and Oceans

17 - 20 November 2008

Stratospheric influence on the extratropical circulation response to surface forcing in high-top and low-top models.

FLETCHER Christopher University of Toronto, Department of Physics 60 Saint George Street M5S 1A7 Toronto Ontario CANADA

Stratospheric Influence on the Extratropical Circulation Response to Surface Forcing

Christopher G. Fletcher, Steven C. Hardiman*

and Paul J. Kushner

Department of Physics University of Toronto

Canada

*now at the UK Met Office

Judah Cohen

AER Inc. Lexington, MA USA

Funded by the Canadian Foundation for Climate and Atmospheric Sciences

In this talk I will:

- Describe the seasonal teleconnection between Eurasian snow cover and the Northern Annular Mode (NAM)
- Show results from a large ensemble of transient simulations using high-top and low-top AGCMs forced with anomalous Siberian snow extent
- Show how the response depends on the details of stratospheric representation
- Demonstrate the large variability in wintertime tropospheric responses to autumnal snow forcing
- Try to convince you that to better predict how the troposphere will respond to snow forcing, you should look at the initial state of the stratosphere (rather than the troposphere)
- Conclude with a brief discussion of other forcings

Teleconnection: Eurasian snow and NAM

- October snow is correlated with December upward WAF pulse
- After WAF pulse the stratospheric circulation is significantly perturbed
- Downward progression of response back into troposphere
- BUT: r~0.5 ⇒ suggests
 large interannual
 variability in the
 teleconnection
- Stratospheric circulation anomalies can arise without a clear tropospheric precursor

a) Corr Oct Snow and 40-80N WAF

Motivation

- Reanalysis data are suggestive but not conclusive: r ~ 0.5
- Previous modeling effort used a small ensemble, an older low-top AGCM and did not examine variability in the response [Gong et al. 2003 & 2004].

Research Questions:

- 1. Can land surface anomalies (e.g. snow) really act as a precursor to strat-trop interaction?
- 2. If so, what is the role for the stratosphere?

Low/high-top AGCMs

- 1. **AM2-LO**: GFDL AM2 (IPCC version of atmosphere) [Anderson et al. 2004; Delworth et al. 2006]:
 - Finite-volume dynamical core:
 2° lat x 2.5° lon
 - 24 vertical levels with lid at 3hPa; 4 above 100hPa
 - Rayleigh drag in top level sponge layer
- 2. **AM2-HI**: Essentially the same as 1. except for:
 - 48 vertical levels and lid at 0.003hPa; 21 above 100 hPa
 - No sponge layer; replaced by non-orographic GWD scheme

Experimental Design

- i. Set of 100 independent Oct 1st initial conditions from long pre-industrial control run:
 - Atmospheric composition = 1870 levels
 - Climatological SST / sea ice
- ii. From each initial condition we fix snow mass at Oct
 1 levels then run two new simulations Oct 1 Dec
 31:
 - (1) HIGH SNOW = Fixed Oct 1 snow + 40cm snow over Siberia
 (January extent)

d1-15 Surface Response to Snow Forcing

Polar Cap Height Response: AM2-LO

High/Low-top Ensemble Mean Response

Fletcher et al. [2008]

Polar Cap Height Response: AM2-LO

Can we Predict the Response From Initial State?

Following Reichler et al. [2005]

Can we Predict the Response From Initial State?

Dynamical mechanism?

$$u_{c}$$

30-day Mean Δ SLP Following WAF Pulses

Fletcher et al. [2007]

Same story in the high-top model?

Fletcher et al. [2008]

Other Forcings

- Significant correlation between responses from N. Atlantic sea-ice and SST forcings
- Component of response (~25%) explained by initial conditions
- Use "Precursor method" to tease out

this component

SST/Ice Data courtesy of Clara Deser

Other Forcings

• Similar precursor in polar stratosphere when we consider strong responses in both SST and ICE runs

• Interesting meridional dipole in lower stratosphere Fletch

Fletcher et al. [2007]; SST/lce Data courtesy of Clara Deser

Conclusions

1. Can snow really act as a precursor to strat-trop interaction?

- Siberian snow forcing does induce WAF pulses, causing warming response in stratosphere and troposphere
- But: response is highly variable around ensemble mean
- 2. What is the role for the stratosphere?
 - Qualitatively, mechanism is the same in high/low-top models
 - **But:** timing and amplitude of response depend on the details of stratospheric representation
 - Initial condition in polar stratosphere provides a useful predictor of tropospheric response (better than tropospheric predictor)
 - An initially weak polar vortex is more likely to produce a warming response and downward propagation back to surface (ve NAM)
 - WAF pulse is more readily absorbed when vortex is weak

3. Is this really about the snow?

- No. "Precursor Method" appears to also apply to SST/sea ice forcing

The end.

Polar Cap Height Response: AM2-LO

Strat-Trop Interaction Diagnostic

Snow forcing begins Oct 1, but strat-trop interaction is associated with WAF pulses whose timing is difficult to predict:

- Find strongest WAF pulses then look at lagged SLP response
- Does strat. initial condition influence interaction?

Northern Annular Mode in SLP

Zonal mean climatologies

