

1968-27

Conference on Teleconnections in the Atmosphere and Oceans

17 - 20 November 2008

Clustering of cyclones and linkage to large scale flow patterns

KVAMSTO Nils Gunnar

University of Bergen Geophysical Institute Allegaten 70 N-5007 Bergen NORWAY

Clustering of Extratropical Cyclones and linkage to large scale flow patterns

Nils Gunnar Kvamstø¹, Yongjia Song¹, Ivar A Seierstad¹, David B. Stephenson^{1,2}, ¹University of Bergen, Norway, ²University of Exeter, UK (Publ. in Tellus A 2008)

www.uib.no

Effects of clustering

Mailier et al (2006) MWR:

- Clustering of European winter storms leads to cumulative insurance losses comparable to those from a catastrophic hurricane.
 - Dec 1999: 3 consecutive storms (insured loss \$7.5 bn)
 - Dec 1989/Jan 1990: 8 consecutive storms (insured loss \$10.5 bn.)
- The scientific reasons for storm clustering have not previously been investigated
- Clustering may change and needs to be accounted for in hazard models. ← Depends on realistic representation in GCMs/RCMs

Identification of clustering

First, we count cyclone transits:

n = number of storms crossing a 20° E-W barrier in each grid point

Feature tracking 1948-2005

- Extended winters (1 Oct-31 Mar)
- 6 hourly NCAR/NCEP reanalyses from 1948 2005)
- 6 hourly output from an AMIP run (obs sst 1948 2005) with the ARPEGE GCM T63L31
- Maximas in ζ_{850} is used to identify cyclones
- Northward cyclone tracks identified objectively using TRACK software (Hodges, 1995, 1996)

Time dependence: Comparison of West and East Atlantic

www.uib.no

Can flow variations explain overdispersion?

Quasi-Poisson regression:

$$n \mid x \sim Poisson(\mu)$$
$$\log(\mu) = \beta_0 + \sum_{i=1}^k \beta_i x_i$$

n = number of storms crossing a 20^o W-E barrier μ = flow-dependent rate $x_1, x_2, ..., x_k$ = teleconnection indices Maximum likelihood estimation of β_0, β_i

Teleconnection patterns

East Atlantic

E. Atl/W. Russian

6

Scandinavian

10 leading rotated EOFs of 500hPa geopotential height.

Can be downloaded from CPCwebsite: <u>http://www.cpc.noaa.gov/data/teled</u> <u>oc/telecontents.shtml</u>

Barston and Livezey (1987)

www.uib.no

Daily teleconnection indices x 1 Sep-31 Dec 2000

www.uib.no

Jan

2001

Jan **2001**

Conclusions

- Overall good resemblance of the ONDJFM mean # of cyclones
- Model biases are mostly present in the Atlantic sector
- South-North moving cyclones appear more regular than random in the western basins and become more clustered as they move Eastward
- The teleconnection patterns (not only NAO!) account for much of the cyclone clustering in NCEP, <u>not</u> in ARPEGE
- Reduced confidence in regional prediction of clustering (& synoptic variability)
- Can not use projected L-S flow indices as proxies for future estimates of clustering
- NCEP based results are consistent with Mailier et al (2006) MWR

