

The Abdus Salam International Centre for Theoretical Physics

1968-36

Conference on Teleconnections in the Atmosphere and Oceans

17 - 20 November 2008

Snow-monsoon teleconnections: testing competing mechanisms using idealized snow forcing in a GCM

TURNER Andrew George and Slingo Julia University of Reading Walker Institute for Climate System Research Department of Meteorology Earley Gate, Whiteknights P.O. Box 243, RG6 6BB Reading UNITED KINGDOM

Snow-monsoon teleconnections: testing competing mechanisms using idealized snow forcing in a GCM

Andrew Turner^{1,2} & Julia Slingo^{3,2,1}

¹Walker Institute for Climate System Research

²NCAS-Climate (University of Reading, UK)

³UK Met Office

- More than a century ago, heavy winter snowfall was thought to precede weak Indian monsoons (Blanford 1884).
- Several studies have examined this in observations:
 - *eg*, Fasullo (2004): regions neighbouring India have robust negative correlations in weak ENSO years (snow cover).
- These rely on the Blanford hypothesis:
 - persistant heavy snow in spring reduces surface sensible heating over the Tibetan plateau, reducing the land-sea meridional temperature contrast and weakening the Asian summer monsoon.

Other studies have shown different results;

- Bamzai & Skukla (1999): western Eurasia is the only region with significant negative correlations between snow cover and ISM rainfall (but only 22yr data). No consideration of ENSO.
- Becker et al 2001: weakened monsoon circulation following heavy Western Eurasian snow cover (modelling study), positive correlation with AIR.
- Generally these rely on some circulation mechanism.

Introduction

- Analysis of long coupled integration
- Ensemble AGCM experiment design
- Preliminary results
- Potential uncertainties and future plan

HadCM3 1050yr control run under preindustrial greenhouse conditions, fullycoupled model:

- atmosphere 3.75°x2.5°xL19
- ocean 1.25°x1.25°xL20

Snow-monsoon correlations in HadCM3

Weak but significant negative correlations:

- FMA Himalaya snow vs. JJAS AIR
- FMA Eurasia snow vs.
 JJAS DMI

Partial correls of FMA snow and JJAS monsoon wrt MAM nino-3

-0.02

0.02

0.06

0.1

0.14

0.18

-0.1

-0.14

-0.18

-0.06

Problems in the monsoon-ENSO teleconnection

Do other state-of-theart coupled models behave better than HadCM3?

FIG. 12. Lag-lead correlation between AIR anomalies and Niño-3.4 SST anomalies: (a) 20c3m and (b) 1pctto2x simulations. In (a) and (b), the results from observations are also shown. Horizontal dotted lines represent the 5% significance level. Lag-12 corresponds to Niño-3.4 SST anomalies one year before the monsoon season.

Correlations in the CMIP3 models which satisfy the Annamalai et al. (2007) test of well-simulating the present day monsoon-ENSO teleconnection.

Snow-monsoon correlations in CMIP3 models

Correlations of JJAS AIR with FMA snow amount

30E 60E 90E

mri_cgcm2_3_2a, total

-0.18 -0.14 -0.1 -0.06 -0.02 0.02 0.06 0.1 0.14 0.18

0

gfdl_cm2_0, partial wrt JJAS nino-3

120E 30E 60E 90E

mri cgcm2 3 2a, partial wrt nino-3

Correlations of JJAS DMI with FMA snow amount

Snow-monsoon correlations in CMIP3 models

- ¾ give significant negative correlations for NW Eurasia snow amount and the dynamical monsoon index, in the absence of ENSO.
- Signal is much more mixed when considering the All-India Rainfall index.

EOF-1 of spring snow amount

HadCM3 1050yr FMA snow amount EOF1 (28.4%)

Can strong snow forcing in either region lead to a deficient summer monsoon over India?

Composites generated from the following conditions:

- Strong spring (FMA) snow amount followed by weak Indian summer monsoon.
- Weak spring (FMA) snow amount followed by strong Indian summer monsoon.

HadCM3 snow composite difference evolutions

National Centre for Atmospheric Science

- Hadley Centre atmosphere model HadAM3: atmosphere 3.75° x 2.5° x L30 vertical levels^{1,2}
- Snow forcing derived from HadCM3 1050yr run: using +/-2σ anomalies in FMA snow indices over:
 - > Eurasia (30-110E, 50-65N)
 - ➢ Himalaya (67.5-100E, 27.5-40N)
- Climatological snow elsewhere.
- Climatological SST forcing.

¹P.M. Inness, J.M. Slingo, S. Woolnough, R. Neale, V. Pope (2001). *Clim. Dyn.* **17**: 777–793.

²H. Spencer, J.M. Slingo (2003). *J. Climate* **16**: 1757—1774.

Snow forcing anomalies

- Experiments initialized 1 Nov.
- Snow depth updated hourly to chosen forcing over Eurasia.
- 32 member ensemble begun 1Apr for 8 months [members initialized from daily start dumps over the 15Mar–16Apr period].
- Snow no longer constrained [free to melt].

- Himalaya AGCM ensemble results consistent with coupled run composites.
- ❖ Strong Himalaya snow forcing
 → weakened Indian monsoon (June).

- Eurasia AGCM ensemble results seem contrary to coupled run composites.
- Strong Eurasia snow forcing → strong Indian monsoon (June).
- Possible contamination from induced Himalaya anomaly?

- Snow forcing of the ASM is complex, even when broken down into separate regions.
- Results here suggest that Himalayan forcing is dominant, in support of the Blanford hypothesis.
- Better land surface initialization required in order to examine mechanisms involved.

To find *the dominant* mechanism

To test region-specific mechanisms

Land surface initialization:

- More simple: just impose a snow forcing in April and release it (no time for balancing)
- The present method: impose the previous winter and allow a certain amount of agreement with soil moisture / atmosphere
- More rigorous: match snow forcing conditions with contemporaneous soil moisture conditions.

Thank you!

 Fasullo 2004: 1966-2001 snow cover data (weekly presence or absence of snow)

FIG. 5: Difference in MAM show cover between strong and weak monsoon seasons in which BNSO conditions are neutral.

착 Corti *et al*. 2001:

- Neutral ENSO: inverse relationship between Tibetan snow and monsoon rain
- Strong El Nino: strong circulation anomalies, inverse relation between Eurasian snow and DMI. Regional effects are overcome & stronger DMI/AIR relationship → inverse relationship between Eurasian snow and monsoon rain.
- Becker et al. 2001: "the results [of climatological SST experiment] have shown that the monsoon circulation is substantially weakened in association with above normal snow amounts over western Eurasia, whilst AIR is slightly increased"
 - > AIR responding to Himalayan snow.
 - > DMI responding to Eurasian snow.

- Becker et al. 2001: "results...with observed SSTs show an opposite response in AIR, suggesting that SSTa forcing is potentially dominating the monsoon interannual variability"
- → Introduce ENSO and the circulation forcing from W Eurasia becomes dominant, together with stronger coupling between AIR and DMI.

