

The Abdus Salam International Centre for Theoretical Physics

1968-35

Conference on Teleconnections in the Atmosphere and Oceans

17 - 20 November 2008

Inter-basin link between the North Pacific and North Atlantic in the upper troposphere: Its dominance and seasonal dependence

HONDA Meiji

Japan Agency for Marine Earth Science Technology JAMSTEC Frontier Research Center for Global Change FRCGC 3173-25 Showamachi, Kanazawa-ku, Yokohama City 236-0001 Kanagawa JAPAN Inter-basin link of variability in the tropospheric circulation over the North Atlantic and North Pacific: Its interdecadal modulations and seasonal dependence

Meiji Honda, Shozo Yamane*, and Hisashi Nakamura**

Frontier Research Center for Global Change Japan Agency for Marine-Earth Science and Technology (FRCGC/JAMSTEC, Japan) * Also Doshisha University ** Also University of Tokyo

Honda, M., S. Yamane, and H. Nakamura (2007), J. Meteor Soc. Japan, 85, 899-908.

Corresponding e-mail: <u>meiji@jamstec.go.jp</u> URL: <u>http://www.jamstec.go.jp/frcgc/research/p1/meiji/index.html</u>

19 November, 2008 Conference on Teleconnections in the Atmosphere and Oceans ICTP, Trieste, Italy

AIS formation (Z250 lag regression on FEB AIS index) 2250Z250DEC JAN Wave activity Atlantik late llate DEC JAN lag -2 lag —1 Z250Z250 tendency **FEB** FEB stormtrack late llate FEB lag 0 FEB vorticity flux lag 0

Feedback from stormtrack Arrows: Wave activity flux (Takaya and Nakamura 2001) Honda et al. (2001)

99%

95%

95%

99%

The AL-IL Seesaw (AIS) Honda et al. (2001)

- AIS is triggered by circulation anomalies over NP (AL)
 Stationary Rossby wave propagation from NP into NA
 Development through feedback forcing from stormtrack
- Large impact on surface weather over NH extensively Europe, Far East, southeast US, Alaska, Canada, Middle East
- Multidecadal variability of the AL-IL seesaw active periods: 20s-40s (January) 70s-80s (February) weak negative corr. through the 20th century

The COWL pattern Wallace et al. (1995, 1996)

- Thermally equilibrium pattern...
 Differential heating between land and ocean May be related to recent NH SAT trend
- Deepening tendencies of the AL and IL in the 20th century
- Significant upward trend: 10s-40s, 70s-00s

AIS and COWL Signatures in Dominant Variability in the Wintertime Northern Hemisphere

NCEP-NCAR 1948/49-98/99 SLP Z250 EOF1 EOF2 SAT linear-Z250PC1 PC2

Wintertime monthly

Winter mean PC time series (normalized) (49-99)

Summary

Dominant variability over the wintertime NH for 50 years SLP: EOF1~NA (AO or NAO?), EOF2~NP (PNA?) **Z250:** EOF1~AL-IL seesaw (no trend) EOF2~COWL (upward trend) More hemispheric signatures in the leading Z250 EOFs \rightarrow stronger inter-basin dynamical linkage in the upper trop. Decadal modulation and seasonal dependence (Z250 EOFs) 50s~60s: EOF1~NA (annular-like), EOF2~NP (AL?) 70s~90s: EOF1~typical evolution of AL-IL seesaw (DJF) EOF2~COWL in JFM with trend Modulation of inter-basin dynamical linkages AIS ~ Local amplification of circumglobal waveguide pattern? Dominance of AIS and COWL in the wintertime NH modulation of the tropospheric leading EOFs Tropospheric leading EOF AO/NAM