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ABSTRACT

In a recent application of networks to 500-hPa data, it was found that supernodes in the network
correspond to major teleconnection. More specifically, in the Northern Hemisphere a set of supernodes
coincides with the North Atlantic Oscillation (NAO) and another set is located in the area where the
Pacific–North American (PNA) and the tropical Northern Hemisphere (TNH) patterns are found. It was
subsequently suggested that the presence of atmospheric teleconnections make climate more stable and
more efficient in transferring information. Here this hypothesis is tested by examining the topology of the
complete network as well as of the networks without teleconnections. It is found that indeed without
teleconnections the network becomes less stable and less efficient in transferring information. It was also
found that the pattern chiefly responsible for this mechanism in the extratropics is the NAO. The other
patterns are simply a linear response of the activity in the tropics and their role in this mechanism is
inconsequential.

1. Introduction

This work uses methods from graph theory to inves-
tigate the role of teleconnection in climate. Because
these methods are new to the atmospheric sciences
community we begin with an introduction of the basic
ideas. Some of these basic principles have been pre-
sented in a recent publication (Tsonis et al. 2006), but
are presented here as well for convenience and com-
pleteness.
A network is a system of interacting agents. In the

literature an agent is called a node. The nodes in a
network can be anything. For example, in the network
of actors, the nodes are actors that are connected to
other actors if they have appeared together in a movie.
In a network of species the nodes are species that are
connected to other species they interact with. In the
network of scientists, the nodes are scientists that are
connected to other scientists if they have collaborated.

In the grand network of humans each node is an indi-
vidual, which is connected to people he or she knows.
There are four basic types of networks.

a. Regular (ordered) networks

These networks are networks with a fixed number of
nodes, each node having the same number of links con-
necting it in a specific way to a number of neighbor-
ing nodes (Fig. 1, left panel). If each node is linked to all
other nodes in the network, then the network is a fully
connected network. When the number of links per
node is high, regular networks have a high (local) clus-
tering coefficient. In this case accidental removal
of a number of links does not break the network into
noncommunicating parts; the network is stable, which
may not be the case for regular networks with small
local clustering. Also, unless networks are fully wired,
they have a large diameter. The diameter of a network
is defined as the maximum shortest path between any
pair of its nodes. It relates to the characteristic path-
length, which is the average number of links in the
shortest path between two nodes. The smaller the
diameter, the easier the communication is in the net-
work.
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b. Classical random networks

In these networks the nodes are connected at random
(Fig. 1, right panel). In this case the degree distribution
is a Poisson distribution (the degree distribution, pk,
gives the probability that a node in the network is con-
nected to k other nodes). The problem with these net-
works is that they have very small clustering coefficient
and thus not very stable. Removal of a number of nodes
at random, may fracture the network to noncommuni-
cating parts. On the other hand, they are characterized
by a small diameter. Faraway nodes can be connected
as easily as nearby nodes. In this case, information may
be transported all over the network much more effi-
ciently than in ordered networks. Thus, random net-
works exhibit efficient information transfer, but they
are not stable.

c. Small-world networks

In nature we should not expect to find either very
regular or completely random networks. Rather we
should find networks that would be efficient in process-
ing information and at the same time be stable. Work in
this direction led to a new type of network, which was
proposed a few years ago by the American mathema-
ticians Watts and Strogatz (1998) and is called small-
world network. A “small-world” network is a super-
position of regular and classical random graphs. Such
networks exhibit a high degree of local clustering but a
small number of long-range connections make them as
efficient in transferring information as random net-
works. Those long-range connections do not have to be
designed. A few long-range connections added at ran-
dom will do the trick (Fig. 1, middle panel). The degree
distribution of small-world networks is also a Poisson
distribution.

d. Networks with a given degree distribution

The small-world architecture can explain phenomena
such as the six degrees of separation (most people are

friends with their immediate neighbors, but we all have
one or two friends a long way away), but it really is not
a model found often in the real world. In the real world
the architecture of a network is neither random nor
small world, but it comes in a variety of distributions
such as truncated power-law distributions, Gaussian
distributions, power-law distributions, and distributions
consisting of two power laws separated by a cutoff
value (for a review see Strogatz 2001). The most inter-
esting and common of such networks are the so-called
scale-free networks. Consider a map showing an air-
line’s routes. This map has a few hubs connecting with
many other points (i.e., supernodes) and many points
connected to only a few other points, a property asso-
ciated with power-law distributions. Such a map is
highly clustered, yet it allows motion from a point to
another faraway point with just a few connections. As
such, this network has the property of small-world net-
works, but this property is not achieved by local clus-
tering and a few random connections. It is achieved by
having a few elements with a large number of links and
many elements having very few links. Thus, even
though they share the same property, the architecture
of scale-free networks is different than that of small-
world networks. Such inhomogeneous networks have
been found to pervade biological, social, ecological, and
economic systems, the Internet, and other systems (Al-
bert et al. 1999; Liljeros et al. 2001; Jeong et al. 2001;
Pastor-Satorras and Vespignani 2001; Bouchaud and
Mezard 2000; Barabási and Bonabeau 2003). These net-
works are referred to as scale free because they show a
power-law distribution of the number of links per node.
Lately, it was also shown that, in addition to the power-
law degree distribution, many real scale-free networks
consist of self-repeating patterns on all length scales
(Song et al. 2005). These properties are very important
because they imply some kind of self-organization
within the network. Scale-free networks are not only
efficient in transferring information, but due to the high
degree of local clustering they are also very stable

FIG. 1. Illustration of a regular, a small-world, and a random network (after Watts and
Strogatz 1998).
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(Barabási and Bonabeau 2003). Because there are only
a few supernodes, chances are that accidental removal
of some nodes will not include the supernodes. In this
case the network would not become disconnected. This
is not the case with weakly connected regular or ran-
dom networks (and to a lesser degree with small-world
networks), where accidental removal of the same per-
centage of nodes makes them more prone to failure
(Barabási and Bonabeau 2003).

2. Previous results

Methods to construct networks were applied to the
climate system by assuming that climate is represented
by a grid of oscillators each one of them representing a
dynamical system varying in some complex way. The
goal was to delineate the collective behavior of these
interacting dynamical systems and the structure of the
resulting network (Tsonis and Roebber 2004; Tsonis
et al. 2006). They considered the global National Cen-
ters for Environmental Prediction–National Center for
Atmospheric Research (NCEP–NCAR) reanalysis
500-hPa dataset (Kistler et al. 2001). A 500-hPa value
indicates the height of the 500-hPa pressure level and
provides a good representation of the general circula-
tion (wind flow) of the atmosphere. The resolution of
the data in those studies was 5° latitude � 5° longitude.

For each grid point a time series of monthly anomaly
values in the period December–February from 1950 to
2004 is available. In this network each grid point is a
node and two nodes are considered as connected if the
absolute value of the correlation coefficient of their
respective time series is greater or equal to 0.5. The
architecture of the resulted network is presented in
Fig. 2, which shows the area-weighted number of total
links (connections) at each geographic location. More
accurately it shows the fraction of the total global area
that a point is connected to. This is a more appropriate
way to show the architecture of the network because
the network is a continuous network defined on a
sphere. Thus, if a node i is connected to N other nodes
at �N latitudes then its area-weighted connectivity, C̃i,
is defined as

C̃i � �
j�1

N

cos�j � �
over all � and �

cos�, �1�

where � is the longitude. In the above expression the
denominator is the area of the earth’s surface and the
numerator is the area of that surface a node is con-
nected to. We observe two very interesting features. In
the tropics, it appears that all nodes posses more or less
the same (and high) number of connections, which is a
characteristic of fully connected networks. In the extra-

FIG. 2. Total number of links (connections) at each geographic location. The uniformity
observed in the tropics indicates that each node possesses the same number of connections.
This is not the case in the extratropics where certain nodes possess more links than the rest.
See text for details on how this figure was produced.
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tropics, it appears that certain nodes posses more con-
nections than the rest, which is a characteristic of scale-
free networks. In the Northern Hemisphere we clearly
see the presence of regions where such supernodes exist
in China, North America, and the northeast Pacific
Ocean. Similarly several supernodes are visible in the
Southern Hemisphere. These differences between the
tropics and extratropics have been delineated in the
corresponding degree distributions, which suggest
that indeed the extratropical network is a scale-free
network characterized by a power-law degree distribu-
tion (Tsonis et al. 2006). As is the case with all scale-
free networks, the extratropical network is also a small-
world network (Tsonis et al. 2006).
An interesting observation in Fig. 2 is that super-

nodes may be associated with major teleconnection pat-
terns. For example, the supernodes in North America
and the northeast Pacific Ocean are located where the
well-known Pacific–North American (PNA) pattern
(Wallace and Gutzler 1981) is found. In the Southern
Hemisphere we also see supernodes over the southern
tip of South America, Antarctica, and the south Indian
Ocean that are consistent with some of the features of
the Pacific–South American (PSA) pattern (Mo and
Higgins 1998). Interestingly, no such supernodes are
evident where the other major pattern, the North At-
lantic Oscillation (NAO; Thompson and Wallace 1998;
Pozo-Vázquez et al. 2001; Huang et al. 1998) is found.
This does not indicate that NAO is not a significant
feature of the climate system. Since NAO is not
strongly connected to the tropics, the high connectivity
of the tropics with other regions is masking NAO out.
In fact, if we consider a network with only nodes north
of the 30°N latitude, we find (Fig. 3, top) that features
consistent with NAO are not only present but are also
the prominent features of the network (the other two
panels of Fig. 3 are discussed later). It should be noted
here that in their pioneering paper Wallace and Gutzler
(1981) defined teleconnectivity at each grid point as the
strongest negative correlation between a grid point and
all other points. This brings out teleconnection patterns
associated with waves such as the trough–ridge–trough
PNA pattern. However, because of the requirement of
strongest negative correlation (which occurs between a
negative anomaly center and a positive anomaly cen-
ter), this approach can only delineate long-range con-
nections. As such, information about clustering and
connectivity at other spatial scales is lost. In the net-
work approach all the links at a point are considered
and as such much more information (clustering coeffi-
cients, diameter, scaling properties, etc.) can be ob-
tained. The similarities between Wallace and Gutzler’s
results and the network results arise from the fact that

FIG. 3. (top) Same as in Fig. 2, but for the extratropical net-
work (30°–90°N). (middle) Same as in (top), but for the network
without PNA. (bottom) Same as in (top), but for the network
without NAO.
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grid points with many long-range links will most likely
stand out. The network approach, however, appears
superior as it is able to delineate both major telecon-
nection patterns at once.
The mathematical terminology of networks and

graph theory may appear rather abstract but is often
associated with the physics of the system the network
represents or is applied to. For example, networks of
nonlinear oscillators may synchronize and experience
bifurcations as physical parameters vary (Pecora et al.
1997; Boccaletti et al. 2002; Tsonis et al. 2007). The rate
at which the degree (number of links) of each node
changes is equivalent to thermodynamics forces and
their conjugated flows and to Onsager relations, which
explain how small perturbations of some parameters
can induce fluctuations of other parameters (Fronczak
et al. 2007). With regards to our previous results men-
tioned above and the new results presented here, the
physical interpretation is that the climate system (as
represented by the 500-hPa field) exhibits properties of
stable networks and of networks where information is
transferred efficiently. In the case of the climate system,
“information” should be regarded as “fluctuations”
from any source. These fluctuations will tend to de-
stabilize the source region. For example, dynamical
connections between the ocean and the atmosphere
may create a disturbance in the upper-atmospheric flow
from a surface temperature anomaly over the Pacific
Ocean. However, the small world as well as the scale-
free property of the extratropical network allows the
system to respond quickly and coherently to fluctua-
tions introduced into the system. This information
transfer diffuses local fluctuations thereby reducing the
possibility of prolonged local extremes and providing
greater stability for the global climate system. The
above theory and its application to climate data suggest
that the climate system may be inherently stable and
efficient in transferring information and that these
properties are closely connected to the presence of tele-
connections. Next we present results that further docu-
ment this hypothesis.

3. Results

Empirical orthogonal function (EOF) analysis is a
well-known procedure in the atmospheric sciences,
which “decomposes” a signal into modes (EOFs) of
variability. Each mode explains some of the variance
observed in the data. The first EOF explains most of
the variance, and so on. Figure 4 shows the first and
second EOF of the extratropical (30°–90°N) 500-hPa
field. Here the data in the period December–March at
a resolution of 2.5° � 2.5° are used. Figure 4 is consis-

tent with previous studies suggesting that these first two
EOFs correspond to NAO and PNA. In our case EOF1
corresponds to the PNA pattern, and EOF2 to the
NAO, albeit the difference in variance explained is very
small (16% and 14%, respectively). We note that EOF
patterns that explain similar percentage variances may

FIG. 4. EOF1 and EOF2 of the observed extratropical 500-hPa
flow. The correlations between the NAO and PNA indices and
the corresponding temporal components (PCA loadings) are
close to 0.9 whereas between TNH and the corresponding tem-
poral component, the correlation is 0.6. Thus, in our case EOF1
identifies more closely the PNA rather than TNH.
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not be uniquely defined. Also some studies have sug-
gested that EOF1 identifies the tropical Northern
Hemisphere (TNH) pattern (Straus and Shukla 2002).
However, in our case we find that the correlations be-
tween the NAO and PNA indices and their correspond-
ing temporal components [i.e., the principal component
analysis (PCA) loadings] are close to 0.9 whereas be-
tween TNH and its corresponding temporal component
is 0.6. Thus, in our case EOF1 identifies more closely
the PNA rather than TNH. In any case, whether it is the
PNA or the TNH that associates with EOF1 is not cru-
cial to the approach here (this will become evident be-
low). We also note here that depending on the period
used and the type of data, EOF1 may not always cor-
respond to PNA. For example, if 700-hPa data are used,
EOF1 corresponds to NAO (whose presence is more
pronounced the closer we are to the surface) and EOF2
corresponds to PNA but again in this case the differ-
ence in variance explained is very small about 20% and
17%, respectively [Van den Dool et al. (2000); see also
the early work of Wallace and Gutzler (1981)]. The
interesting feature of EOF analysis is that we can use
the results to approximate the original data by includ-
ing only EOFs that contribute significantly to total vari-
ance. In this process we can exclude one significant
mode (PNA or NAO) to construct new data without
that mode. This way we can construct a climate without
the PNA pattern or without the NAO. As such we have
a procedure to investigate how climate will behave
without the presence of one or more major teleconnec-
tion patterns. Having the reconstructed climates we can
then investigate the variability of their networks and
isolate the role of teleconnections (i.e., supernodes in
the network) in climate.
The bottom two panels in Fig. 3 show the reduced

climate networks (without PNA and without NAO, re-
spectively). In addition to these connectivity maps,
Fig. 5 shows the total distance for each grid point, which
is the average length of all its links multiplied by its
connectivity (for reference, the distance between the
equator and the Pole is 	/2).1 Table 1 shows the clus-
tering coefficient and the average distance of the net-
work for the complete and the reduced networks. The
average total distance of the network is the average of
the corresponding field in Fig. 5. It relates to the diam-
eter of the network; the larger the distance the smaller
the diameter the easier the information transfer.
Before discussing the interpretation of these results,

it is useful to revisit the procedure of estimating the
clustering coefficient. The procedure to estimate the

1 Here 	/2 � Pole-to-equator distance.

FIG. 5. Total distance at each geographical location (top) for the
complete network, (middle) for the network without PNA, and
(bottom) for the network without NAO. See text for definition of
distance.
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clustering coefficient in classical networks is illustrated
in Fig. 6. The top panel shows a hypothetical network
and the links of a specific node (the central one, in this
case denoted as i). According to this information the
central point is connected to eight other nodes. These
eight nodes are called the neighbors of node i and de-
fine the closest neighborhood of this node. To estimate
the clustering coefficient for this node we then find the
number of distinct links between these eight neighbors,

i. For any number of ki neighbors there are at most
ki(ki � 1)/2 possible connections. This happens when
each node in the neighborhood is connected to every
other node in the neighborhood (the central point is not
part of the neighborhood). In our example there are
five links between the neighbors. Thus 
i � 5. Then, the
clustering coefficient for node i is Ci � 2
i /(ki � 1)ki �
0.178 (Watts and Strogatz 1998). Based on this defini-
tion the clustering coefficient varies between [0, 1]. The

average Ci over all nodes provides the clustering coef-
ficient of the network, C. For a fully connected network
C � 1 and for a random network C � �k
/N, where �k

is the average number of links per node and N is the
total number of nodes in the network.
The above definition of the clustering coefficient is

appropriate for classical networks where the relative
position of nodes and links is arbitrary and there are no
spatial correlations between nearby nodes (e.g., a net-
work of scientists where a link indicates that the two
corresponding scientists have coauthored a paper). In
our case, the network is derived from a spatially ex-
tended system where local spatial correlations extend-
ing up to some characteristic scale as well as long-range
spatial correlations are present. Indeed, we find that in
such cases removal of the supernodes does not change
the clustering coefficient. When we remove a super-
node we effectively remove its long-range links while
background local correlations still remain. In this case
the neighborhood becomes smaller but it may still be
well connected (because of the local correlations),
which means that the clustering coefficient after remov-
ing the supernodes may not decrease as expected in
classical nonspatial networks. To account for this ad-
verse effect we have introduced a variation of the defi-
nition of the clustering coefficient (Tsonis et al. 2006,
2008). This modified procedure is outlined in Fig. 7.
The top-left panel shows again a hypothetical 2D uni-
form grid (where now each grid represents a square of
some area and where spatial correlations between grid

FIG. 6. Illustration of the method to estimate the clustering
coefficient (see text for details).

FIG. 7. Illustration of the method to estimate the modified
clustering coefficient (see text for details).

TABLE 1. Clustering coefficient and distance for the networks
considered.

Modified clustering
coefficient Distance

Complete network 0.34 0.0025
Network without PNA 0.33 0.0023
Network without NAO 0.27 0.0016
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points may exist) and the links of the central node i.
According to this information the central point is con-
nected to eight other nodes. This means that C̃i � 8/25.
This number is specific to the central node and we use
it to define the size of the closest in space neighborhood
to the central node, which, accordingly, will be the clos-
est eight squares shown on the top-right panel. This
panel also shows all the links between the representa-
tive grid points in this neighborhood (again here the
central point is not part of the neighborhood). The bot-
tom eight panels correspond to the eight neighbors and
show the area each grid point is connected to. For ex-
ample, the first of these eight panels corresponds to the
top-left neighbor and shows the area on the grid that it
is connected to (i.e., the black square). This number,
(e.g., 1), is indicated on the top of this panel. The num-
ber in the parenthesis, (e.g., 7), is the maximum number
of squares that each node could be connected to. Doing
this for all eight neighbors we find that the neighbors
are connected to a sum of eight squares. Dividing this
number by the maximum sum possible (8 � 7 squares)
gives the clustering coefficient of the central node,
0.1428. More formally, the modified clustering coeffi-
cient for a node i is defined as Cmi � 2
mi/(ki � 1)ki,
where 
mi is the number of distinct links (four in
the above illustration) between pairs of nodes in the
closest spatial neighborhood of node i defined by C̃i,
and ki(ki � 1)/2 is the maximum number of possible
distinct links between ki nodes (28 in our illustration).
Based on this definition the clustering coefficient varies
again between [0, 1]. The average Cmi over all nodes
provides the modified clustering coefficient of the net-
work, Cm. The above procedure can easily be extended
to the surface of a sphere with the help of Eq. (1). Note
that because we are now calculating on the earth’s sur-
face north of 30°N, the area provided by C̃i may not
always be a circle, but it could be some arc sector. Note
also that the presence of spatial correlations does not
adversely affect the estimation of the diameter (or dis-
tance) of the network.
The results in Table 1 indicate that both the modified

clustering coefficient and the average distance of the
network without PNA are virtually unchanged com-
pared to the complete network, whereas in the network
without NAO they are significantly smaller (20% and
36%, respectively). Here we need to stress the follow-
ing: as we mentioned above, when the long-range links
due to teleconnections are removed, the closest spatial
neighborhood for the nodes associated with supernodes
becomes smaller. One may argue then that the cluster-
ing coefficient will increase because the local correla-
tions cause most of nodes in a small neighborhood to be
connected, which will indicate that after the removal of

the supernodes the system becomes more locally clus-
tered and thus more stable rather than the other way
around. It follows that in order to be consistent with
graph theory, which demands that removal of super-
nodes makes the network less connected and less stable
(i.e., with a smaller clustering coefficient), the removal
of a supernode has to also weaken local correlations.
This conjecture is verified by the data. Figure 8 shows
for the 500-hPa field used here the average correlation
between two points as a function of their distance, for
the complete field and for the fields without PNA and
without NAO. We see that when the PNA is removed
the local correlation structure remains unchanged.
However, when NAO is removed the local correlation
structure weakens, which should result in a more frag-
mented network. This novel result is consistent with the
definition of the modified clustering coefficients in
Table 1, and indicates that the modified approach to
estimate the clustering coefficient in spatially extended
systems is more appropriate.
The above results point to the following. 1) The PNA

is not relevant to the stability and efficiency of the cli-
mate network in the extratropics. Given that in the
global network (Fig. 2) the PNA is the major feature in
the Northern Hemisphere extratropics, this result indi-
cates that the PNA pattern is a linear response to tropi-
cal forcing. In other words, most of its connections are
with the tropics and not with the extratropics. 2) On the
other hand, the NAO is the pattern that appears to be
the major force in the extratropics. These points can be
visualized in Figs. 2, 3, and 5. In the global network

FIG. 8. For the 500-hPa field used here this figure shows the
average correlation between two points as a function of their
distance, for the complete field, and for the fields without PNA
and without NAO. When the PNA is removed we see that the
local correlation structure remains unchanged. However, when
NAO is removed the local correlation structure weakens.
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(Fig. 2) the PNA pattern stands out whereas NAO
is virtually absent. In the extratropics-only network
(Figs. 3 and 5) the PNA has “faded” and NAO domi-
nates. The small connectivity and total distance of the
extratropical network observed in the areas of the PNA
pattern is an indication that only local small-scale con-
nections or connections within itself are associated with
this pattern, whereas points associated with NAO have
much longer range. The results in Figs. 2, 3, and 4 are
not affected by the time window (December–March)
used. Different windows produce similar networks and
properties.
As we discussed in the introduction a lower cluster-

ing coefficient means that the network is becoming
more prone to failure and a greater diameter (i.e., a
smaller distance) implies less efficient transfer of infor-
mation. Here we see that when the true supernodes
(the NAO) are removed, the network becomes less
clustered locally and less efficient in transferring infor-
mation. This will indicate that the climate network from
a stable and efficient scale-free–small-world network
becomes a not so highly clustered regular network.
Now the network is more prone to failure and thus not
as stable. In this case “failure” will indicate the break-
down of a prolonged regime and the emergence of a
new regime. This, directly suggested from graph theory,
conjecture is verified from observations. Figure 9 shows
500-hPa anomaly composites for three 5-yr periods in
the 1970s and early 1980s. In the early 1970s (top panel)
the 500-hPa anomaly field is dominated by the presence
of a wave-3 pattern with both the PNA and NAO (in its
negative phase) being very pronounced. In the mid-
1970s (middle panel) this field is very weak and both
NAO and PNA have for all practical purposes disap-
peared. After that (bottom panel), the field becomes
strong again but a new wave-2 pattern with a very pro-
nounced positive NAO has emerged. This shift is
known as the climate shift of the 1970s. This event is
clearly consistent with our hypothesis. When super-
nodes are removed climate becomes unstable and shifts
to a new state. Lately, Tsonis et al. (2007) have discov-

→

FIG. 9. The 500-hPa anomaly field composites for the period
(top) 1969–74, (middle) 1973–78, and (bottom) 1977–82. In the
(top) a wave-3 pattern is visible with PNA and NAO in its nega-
tive phase being present. In the (middle) both NAO and PNA
have for all practical purposes disappeared. In the (bottom) the
field emerges as a wave-2 pattern with NAO in its positive phase.
As we explain in the text this transition (known as the climate
shift of the 1970s) is consistent with our conjecture that removal of
supernodes makes the network (i.e., the climate) unstable and
more prone to failure (i.e., the breakdown of a regime and emer-
gence of another regime).
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ered a dynamical mechanism explaining such shifts.
According to that study major climate modes may syn-
chronize. Once in place, the synchronized state may
become unstable and shift to a new state. It appears
that our conjecture plays a role in this desynchroniza-
tion of major climate modes. This point is the subject of
our continuing work in this area and more results will
be forthcoming in the future.
As a final note we would like to point out that EOF2

(representing NAO) includes, apart from the dipole
over western Europe and Greenland, a third center east
of Mongolia. Other EOF-type analyses have also fea-
tured this center in the EOF delineating NAO (Van
den Dool et al. 2000). This center, which is also visible
in the connectivity map (Fig. 3, top), does not appear to
be associated with the weak and dubious western Pa-
cific pattern. This may indicate that the NAO actually is
a three-pole pattern rather than a dipole. The fact that
this center is absent in the global network (Fig. 2),
where NAO is suppressed due to its lack of connections
with the tropics, provides support to this hypothesis.
Our analysis also brings up the more general question
as to whether or not EOF analysis (which is based on
variance explained) is indeed the appropriate method
to study climate signals or oscillations. EOF analysis
associates the first EOF with the PNA pattern while in
the network approach NAO is far more dominant.
Thus, if variance is more important than how the sys-
tem works (i.e., underlying topology), then EOF analy-
sis may be the best approach. Otherwise, approaches
like the network approach may be more appropriate.
We have started looking into this problem and more
details may be forthcoming in future publications.
Finally we note that the above results are highly re-

produced in model simulations. Figures 10, 11, and 12
are similar to Figs. 3, 4, and 5, respectively, but for the
300-yr ECHAM5/Max Planck Institute Ocean Model
(MPI-OM) model simulation from Max Planck Insti-
tute for Meteorology. While differences in magnitudes
can be observed, qualitatively all major features in the
results from observations are reproduced in the results
from the simulation. This indicates that the results from
the observations are not due to inhomogeneities in the
NCEP–NCAR reanalysis or length of data.

4. Conclusions

Atmospheric teleconnections are very intriguing phe-
nomena in the climate system. The dynamics under-
lying the establishment of teleconnections are not well
understood. Here we have used a novel approach to
study the role of atmospheric teleconnection in climate.
We find that teleconnections in the extratropics play

FIG. 10. Same as in Fig. 3, but for the 300-yr ECHAM5/
MPI-OM simulation.
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the role of supernodes in the corresponding networks.
We also find that teleconnection patterns in the extra-
tropics can be divided into two categories: those that
are simply a linear response to tropical forcing and
those that are intrinsic to the extratropics. Finally, we
verify the hypothesis that teleconnections make climate
more stable and more efficient in transferring informa-
tion; removal of the dominant supernodes results in less
stable and less efficient networks thus increasing the
chances for a major climate shift.

FIG. 11. Same as in Fig. 4, but for the 300-yr ECHAM5/
MPI-OM simulation.

FIG. 12. Same as in Fig. 5, but for the 300-yr ECHAM5/
MPI-OM simulation.
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