

The Abdus Salam International Centre for Theoretical Physics

1968-57

Conference on Teleconnections in the Atmosphere and Oceans

17 - 20 November 2008

Atmospheric teleconnections and atmospheric regime behaviour under future climate projections

HANDORF Doerthe and DETHLOFF Klaus

Alfred-Wegener Institute For Polar & Marine Research Research Department Telegrafenberg A43 D-14473 Potsdam GERMANY

Atmospheric regime behaviour under future climate projections

Dörthe Handorf, Klaus Dethloff

Alfred Wegener Institute for Polar and Marine Research Research Department Potsdam

Circulation Regimes

Since Rossby (1939):

>Atmospheric variability characterised by few recurrent/persistent

- large-scale anomalous circulation patterns over defined region
- > Atmospheric variability due to (irregular) transitions

Concept of Regimes

- > approach for understanding low-frequency variability
- > dynamical mechanisms underlying the regimes

Circulation Regimes

> Regimes associated with large-scale structure of the chaotic attractor

(a) Stationary solutions

 \rightarrow Lorenz-Model

→ Barotropic models (e.g. Charney & DeVore, 1979, Legras & Ghil, 1985)

(b) Bifurcation Cascade \rightarrow Chaotic itinerancy

 \rightarrow Regimes identified with the ruins of multiple attractors

that have merged to a single attractor

→Baroclinic models (Itoh & Kimoto, 1996)

 \rightarrow Baroclinic model with realistic regimes \rightarrow (Sempf et al., 2007)

Climate regimes under future projections

- Does low-frequency variability, simulated by coupled AOGCMs, resemble regime-like behaviour?
- Does external forcing change only the frequency of occurence of preferred regimes or the regime structure itself?
 Can we detect differences between different model

realizations?

IPCC AR4 Coupled Atmosphere-Ocean GCM Simulations

	MPI-ECHAM5/OM1	UKMO-HadCM3	NCAR-CCSM3	CCCma-CGCM3
Atmosphere	ECHAM5	HadAM3	CAM3	AGCM3
	T63, L31	2.75x3.75° grid	T85, L26	T47, L31
		(approx. T42), L19		
Ocean	MPI-OM1		POP 1.4.3	Based on MOM
	1.5x1.5°grid	1.25x1.25°grid	1.125x(0.27-1.0) ^o	1.85x1.85°grid
	L40	L20	L40	L29
Coupling	No flux adjustment	No flux adjustment	No flux adjustment	No flux adjustment

Analysed Experiments

Preindustrial control	Constant forcing, preindustrial values		
simulation (PICTRL)			
340 years			
20 th century simulation	Anthropogenic forcing:		
(20CM3)	CO2,CH4,N2O, F11,F12,O3,sulfate		
1870-1999			
21 th 22 nd century simulation	Anthropogenic forcing:		
(SRESA1B)	CO2 (about 700ppm by 2100),CH4,N2O, F11F11,F12,O3,sulfate		
2000-2199	Constant forcing after year 2100		

Data and Data preprocessing

> For comparison: NCEP/NCAR Reanalysis

Determination of climate regimes in a low-dimensional (3D) state space (see e.g. Crommelin, 2004)

➢ Basis functions of the common 3D-state space
→ common Principal Component Analysis (PCA)
➢ Projection of PC-data α₁, α₂, α₃ onto unit sphere (ρ=1)

 $\alpha_{1} = \rho \cos \theta \sin \phi$ $\alpha_{2} = \rho \sin \theta \sin \phi$ $\alpha_{3} = \rho \cos \phi$

with
$$\begin{array}{l} 0 \leq \rho \\ 0 \leq \theta \leq 2\pi \\ 0 \leq \phi \leq \pi \end{array}$$

Determination of climate regimes in a low-dimensional (3D) state space (see e.g. Crommelin, 2004)

Spherical probability density function (SPDF) f(θ,φ)
by kernel density estimation

> 1000 Monte Carlo simulations of random Gaussian PCs (same μ , σ , AR1) > 1000 SPDFs of simulated PCs > 90%(95%) confidence levels

SPDF normalized by value for Gaussian distribution Unexpected high recurrence prob.
(900 of 1000 sim. PDFs have lower p-values)

Dominant spatial patterns for NH 20-90°N: All models EOF1

Dominant spatial patterns for NH 20-90°N: All models EOF2

Regime Detection Northern Hemisphere 20-90°N Spherical PDF- Areas of unexpected high recurrence probability

Regime Detection Northern Hemisphere 20-90°N Spherical PDF- Areas of unexpected high recurrence probability

GPH 500hPa anomaly patterns of Regime 1: EA/WR-Run 20CM3 (1870-1999): All models NCEP/NCAR Reanalysis

GPH 500hPa anomaly patterns of Regime 2: COWL Control run

GPH 500hPa anomaly patterns of Regime 3: PNA-Run 20CM3 (1870-1999): All models NCEP/NCAR Reanalysis

GPH 500hPa anomaly patterns of Regime 3a: AO+ Run 20CM3 (1870-1999): All models NCEP/NCAR Reanalysis

GPH 500hPa anomaly patterns of Regime 4: PNA+/NAO-Run 20CM3 (1870-1999): All models NCEP/NCAR Reanalysis

GPH 500hPa anomaly patterns of Regime 4a: AO-Control run

Summary and Conclusions

- Coupled AOGCMs are capable to reproduce regime-like behaviour
- Control runs
 - → 5 regimes (EA/WR-, PNA-, PNA+/NAO-, COWL, AO-)
- ➢ 20th century
 - \rightarrow additional regime AO+
 - → common regimes resemble NCEP regimes (EA/WR-, PNA-, PNA+/NAO-, AO+)
- Scenario runs
 - → Changes in the frequency of occurrence of regimes (COWL more frequent, regimes with annular structure more frequent, PNA- less frequent)
 - → Regime structure slightly changed (PNA-, PNA+/NAO-, AO+)
- Differences between models concerning number of regimes
 - \rightarrow Response to forcing different among the models
- ECHAM5/OM1 tendency to preferred regional Pacific patterns
- > HadCM3, CGCM3 tendency to preferred annular and European patterns

Outlook

➤ Understanding differences between different models
→ Quantifying the influence of internally generated climate variability by analyses of ensemble simulations
→ Study of dynamical causes for changed climate regimes

> Robust method for regime detection??

