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Motivations and Aims

» According to a simple interpretation (the climate noise paradigm) the relevant
space-time scales of NAO are determined by processes which are internal to

the atmosphere.
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Motivations and Aims

However, departures from a red noise hypothesis are evident in the
spectrum of the observed NAO, showing enhanced power around
decadal and near-biennial time-scales, suggesting the involvement of
external factors.
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Power spectrum
of 300 mb gph PC1
[Feldstein,2000]

red noise

Among the external forcings which may potentially affect the NAO
variability what is the role of the ocean?



*Marshall et al. (2001; MO1) inspected the interplay between NAO and
ocean circulation within a theoretical framework and suggest that
both ocean gyre and/or thermo-haline circulation may determine
coupled ocean-atmosphere interactions on decadal timescales.
[delayed oscillator model ]
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*So far, this issue has been mostly inspected within simplified
experimental settings (analytical models , intermediate complexity
models)

* Aim of this work is to investigate the role of ocean circulation in NAO low
frequency variability within the context of a full-fledged coupled sea-ice-
OAGCM.



SINTEX-G (SXG) MODEL (Gualdi et al., 2008)
« ATM: ECHAM4 T106 and 19 hybrid sigma-pressure levels
* OCE: ORCA2 2°x2°cos@ w/ increased resolution near the Equator, 31 levels
« ICE: LIM thermodynamic-dynamic snow sea-ice model
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SXG 20CM3 SXG SLP EOF1 Power Spectra
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Composites of winter (JFM)
GPH anomalies keyed to
the NAOI (positive phase):

equivalent barotropic response. A/
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SST Composﬂe maps (keyed to the SST PC1)
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Re-emergence of the tripole in a 5 years time.
Thermal inertia of the mixed layer accounts for an ocean memory of a few

months (Frankignoul et al. 1998). If the tripole reappears (instead of
undergoing an exponential decay) an additional process must be at work.




Lead-lag Correlation Analysis of NAOI/SST (NAOI leading for positive time lags)
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NAO/Ocean Circulation Interactions
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Warm (cold) thermal anomalies generated during positive (negative)
NAO episodes are propagated by lateral advection to the high latitudes.
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Along-track SSTA hovmoller diagram (NAC pathway).
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NAO/Ocean Circulation Interactions

+3 Year ) +4 Year +5 Year

SST Composite maps keyed to the SST PC1. (Years with PC1 > 1 std minus years
with PC1 < -1 std for different time-shifts). Note the re-emergence of the tripole after 5 yr.

This advective mechanism increases the long term memory of the SST,
and the re-emergence of the SST tripole, on multiannual time-scales.




The role of ocean circulation in the meridional heat transport.

Gyre circulation Meridional overturning circulation
20C3M Mean Meridional Overturning Streamfunction (Sv)
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NAOI/Meridional Heat Transport lagged correlation at the cross-gyre boundary

(51N). [NAOQI leads for positive lags.]
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Correlation is larger for the gyre contribution. Max. correlation for both ovt

and gyre is achieved in 1-2 yrs and is positive. Hence, NAO+ drives a

delayed poleward heat transport which concurs to a warming of the SPG.

A warming in the subpolar region pushes the NAO towards a negative phase (NAO-)
which in turn produces a weaker northward heat transport, restoring cooler conditions

at the northern latitudes.



The anomalous gyre circulation response to the NAO wind-stress.
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Composﬂe of JFM wind stress :NAO+ minus NAO- Y EOF1 Inter-gyre gyre (IGG)
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Inter-gyre gyre: consistent with the barotropic streamfunction anomaly driven
by NAO wind-curl as predicted by Sverdrup balance:

PY(x,0) = - atanqbfk (Vx7)dx




During a NAO+ phase the IGG contributes to the warming of high
latitudes, hence weakining the SST meridional gradient.
(ocean circulation/NAO negative feedback)
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Once the northern SST dipole has reversed its sign, there are favourable
conditions for the NAO to enter into a negative phase
(SST/NAO positive feedback)
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Composite maps of 200 hPa GPH and SST keyed to the SST PC1
(computed for years when SST PC1> 1 std)
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Conclusions

 Results from a full-fledged sea-ice-ocean-atmosphere GCM suggest
that midlatitude variability in the North Atlantic sector on multi-annual
time-scales is determined by an oscillatory mode involving covarying
changes in SST and atmospheric circulation with a typical NAO-like pattern.

Anomalous wind-driven circulation associated with the NAO wind-torque
is responsible for carrying heat through the subtropical/subpolar gyre
boundary, which in turn modulates the northern lobes of the SST tripole.

* The MOC appears to be less efficient in driving the NAO-induced
poleward cross-gyre heat transport.

* Present results are qualitatively consistent with the delayed-oscillator
paradigm (Marshall et al. 2001; Czaja and Marshall 2001).
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Correlation maps of NAOI and barotropic streamfunction for several time lags.
NAO leads for positive lags.

90" W 60" W 30" W 0 90" W 60" W 30" W 0
3 75N

75 N 75 N

60" N 60° N 60" N

45 N 45 N 45 N

30° N 30" N | s (e 30N | .

15 N 15 N 15 N

75 N 75 N e 75 N

60" N 60° N 60° N

45 N 45 N 45 N

30°N| . 80" N| 30° N

15 N 15 N 15 N

75 N PSS 75 NPES 75 N

60° N 60° N 60° N

45" N 45N 45N

30" N 30N | 4 30N

15 N 15 N 15 N




Correlation maps of NAOI and Meridional Mass Transport for several time lags.

NAO leads for pos_i}i%e lags. ayr oy
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Delayed Oscillator: Parameter estimate

dAT/dt= - A*AT — Fg*AT(-1/2)

R = f*g*/\* :Ratio between gyre efficiency (g*f*) and damping SST
damping (A¥)

MODEL (SINTEX - G) R=0.1 = Very damped!
OBS( Czaja and Marshall,2001) R=04



