

The Abdus Salam International Centre for Theoretical Physics

1968-58

Conference on Teleconnections in the Atmosphere and Oceans

17 - 20 November 2008

Impact of a projected future arctic sea ice reduction on the NAO and Rossby wave breaking

BADER Juergen and SEIERSTAD Ivar Bjerknes Center for Climate Research Allégaten 55 5007 Bergen NORWAY

Impact of a Projected Future Arctic Sea Ice Reduction on Extratropical Storminess and the NAO

Jürgen Bader and Ivar Seierstad

Bjerknes Centre for Climate Research, Bergen, Norway

ICTP, Trieste, November 20, 2008

juergen.bader@bjerknes.uib.no

Bier

Outline

Introduction

Motivation

Scientific Objectives

Experimental Setup

Results

Summary and Conclusions

juergen.bader@bjerknes.uib.no

Bjerknes

for Climate Research

Centre

⊒

∽ a

Impact of a Projected Future Arctic Sea Ice Reduction on Extratropical Storminess and the NAO Ivar Seierstad and Jürgen Bader, Climate Dynamics 2008

North Atlantic Oscillation (NAO)

positive NAO

negative NAO

NAO is the dominant mode of winter climate variability in the North Atlantic region. The NAO is a large scale seesaw in atmospheric mass between the subtropical high and the polar low.

Observed Sea-ice Extent September 2007

Sketch

juergen.bader@bjerknes.uib.no

Bjerknes Centre

for Climate Research

Ē

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

<u> イロ ト イロ ト イ ミ ト イ ミ ト</u>

Scientific Objectives

Impact of a projected future Arctic Sea Ice Reduction on the North Atlantic Strom Track and the NAO

Observed and Simulated Sea ice Change

Stroeve et al. 2007, GRL: Observed Sea Ice Change faster than simulated

Bjerknes

- (つ)

 $\triangleleft \square \triangleright$

for Climate Research

entre

Sea Ice Experiments with ECHAM5

- ► AGCM ECHAM5
- ▶ Resolution: T42 $(2.8^{\circ} \times 2.8^{\circ})$ horizontal; 19 vertical levels
- ► Two experiments are performed:
 - A "present-day"-integration is forced by the current observed (1981-1999)
 - A "future" by a projected (2081-2099) seasonal cycle of Arctic sea ice

Sea Ice Experiments with ECHAM5 II

more details:

- "present day" integration: SST and SIC are based on the HadISST 1.1 dataset; The computed seasonal cycle covers the period 1981-1999
- "future" integration: SIC is based on the ECHAM5/MPI-OM IPCC SRESA1B scenario output; seasonal SIC-cycle is computed from three ensemble members (2080-2099) SSTs have been replaced at grid point were sea ice occurs; Future SSTs are used at these points
- \Rightarrow only changes in Arctic SIC and SSTs!

juergen.bader@bjerknes.uib.no

Bier

Sea-ice Reduction in January

"Future-" minus "Present-day-" Integration [in %]

Except over Hudson Bay, spatial pattern consistent throughout the winter season

Bierknes

< □

戶

for Climate Research

entre

Latent and Sensible Heat-Flux Difference

averaged over ocean points between 55°N and 85°N [in Wm^{-2}]

500 hPa Geopotential Height Response [in gpm]

DJ<u>F</u> <u>March</u> -50 -40 -30 -20 -10 10 20 30 40 50 60 80 90 70

juergen.bader@bjerknes.uib.no

Bjerknes

◀ □ ▶

- < f⊅ ▶

for Climate Research

三

Centre

亖

∽ q

Reg. coeff. between 500hPa GPH Response and the NAO

juergen.bader@bjerknes.uib.no

Bierknes

 \blacksquare

for Climate Research

亖

Centre

≣

∽ Q

Storminess Response in Eddy kinetic energy (2-8 day)

January

▲□▶ ▲□▶ ▲≧▶

Ξ

< Ξ

5900

Response in: Zonal mean zonal wind, Storminess, EP-flux

Forcing of the zonal mean zonal wind due to eddy momentum flux divergence

vertically averaged 700-100 hPa

- dashed lines: Response in eddy momentum flux divergence for a negative NAO-composite
- solid lines: Response in eddy momentum flux divergence

juergen.bader@bjerknes.uib.no

Bierknes

Centre

Summary and Conclusions

- removal of sea-ice reduces storminess locally but not much at midlatitudes in DJF
- ► large reduction in midlatitude storminess
- response strongly projects on the negative phase of the NAO
- consistent with a forcing from transient and quasi-stationary eddies associated with negative NAO events
- important large scale influence of sea-ice anomalies depend on their ability to trigger the negative phase of the NAO
- background state can result in qualitatively different atmospheric responses
- At this stage it is not clear why the NAO is much more sensitive in March.

Thank you very much for your attention!

